login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076449
Least number whose digits can be used to form exactly n different primes (not necessarily using all digits).
8
1, 2, 25, 13, 37, 107, 127, 113, 167, 1027, 179, 137, 1036, 1127, 1013, 1137, 1235, 1136, 1123, 1037, 1139, 1079, 10124, 10126, 1349, 1279, 1237, 3479, 10699, 1367, 10179, 1379, 10127, 10079, 10138, 10123, 10234, 10235, 10247, 10339, 10267
OFFSET
0,2
COMMENTS
Smallest m such that A039993(m) = n. - M. F. Hasler, Mar 08 2014
Mike Keith conjectures that a(n) always exists and reports that he has checked this for n <= 66. - N. J. A. Sloane, Jan 25 2008
LINKS
Michael S. Branicky, Table of n, a(n) for n = 0..2702 (terms 1..457 from Robert G. Wilson v)
C. K. Caldwell, The Prime Glossary, Primeval Number
J. P. Delahaye, Primes Hunters, 1379 is very primeval (in French)
W. Schneider, Primeval Numbers
G. Villemin's Almanach of Numbers, Nombre Primeval de Mike Keith
FORMULA
a(n) = min { m | A039993(m)=n } = min A039993^{-1}(n). - M. F. Hasler, Mar 08 2014
EXAMPLE
a(10) = 179 because 179 is the least number harboring ten primes (namely 7, 17, 19, 71, 79, 97, 179, 197, 719, 971).
MATHEMATICA
(* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) f[n_] := Length[ Select[ FromDigits /@ Flatten[ Permutations /@ Subsets[ IntegerDigits[ n]], 1], PrimeQ[ # ] &]]; t = Table[0, {50}]; Do[ a = f[n]; If[a < 50 && t[[a + 1]] == 0, t[[a + 1]] = n], {n, 12500}]; t (* Robert G. Wilson v, Feb 12 2005 *)
PROG
(PARI) A076449(n)=for(m=1, 9e9, A039993(m)==n&&return(n)) \\ Not very efficient. - M. F. Hasler, Mar 08 2014
(Python) # see linked program
CROSSREFS
Cf. A075053, A072857 gives a similar sequence, A134596.
Sequence in context: A249634 A161575 A036502 * A153811 A101962 A092045
KEYWORD
base,nonn
AUTHOR
Lekraj Beedassy, Nov 07 2002
EXTENSIONS
Edited by Robert G. Wilson v, Nov 24 2002
Keith link repaired by Charles R Greathouse IV, Aug 13 2009
Definition reworded by M. F. Hasler, Mar 08 2014
a(26) corrected by Robert G. Wilson v, Mar 12 2014
STATUS
approved