login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357558
a(n) = Sum_{k = 0..n} (-1)^(n+k)*k*binomial(n,k)*binomial(n+k,k)^2.
3
0, 4, 54, 648, 7500, 85440, 965202, 10849552, 121566744, 1359160020, 15172321890, 169175039616, 1884704860116, 20982512553912, 233474575117770, 2596777575029280, 28872014164369968, 320917108809011868, 3566175414049854306, 39620770883613043240, 440115513924937822020
OFFSET
0,2
FORMULA
Conjecture: a(p-1) == 0 (mod (p - 1)*p^4) for all primes p >= 5 (checked up to p = 499).
Note: Let B(n) = A005258(n). It is known that B(n) = Sum_{k = 0..n} (-1)^(n+k)* binomial(n,k)*binomial(n+k,k)^2 and the supercongruences B(p-1) == 1 (mod p^3) hold for all primes p >= 5 (see, for example, Straub, Example 3.4).
Recurrence: a(0) = 0, a(1) = 4 and for n >= 2, (5*n - 2)*(n^2 - 1)*a(n) = (55*n^3 - 22*n^2 - 19*n + 10)*a(n-1) + n*(5*n + 3)*(n-1)*a(n-2).
a(n) ~ phi^(5*n + 7/2) / (2*Pi*5^(1/4)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Oct 05 2022
EXAMPLE
Example of a supercongruence:
p = 17: a(17 - 1) = 28872014164369968 = (2^4)*3*(17^4)*107*251*268153 == 0 (mod 16*7^4)
MAPLE
seq( add( (-1)^(n+k)*k*binomial(n, k)*binomial(n+k, k)^2, k = 0..n ), n = 0..20 );
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Oct 03 2022
STATUS
approved