The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A159749 The decomposition of a certain labeled universe (A052584), triangle read by rows. 1
 2, 2, 4, 2, 12, 16, 0, 24, 96, 96, -8, 0, 320, 960, 768, 0, -240, 0, 4800, 11520, 7680, 240, 0, -6720, 0, 80640, 161280, 92160, 0, 13440, 0, -188160, 0, 1505280, 2580480, 1290240, -24192, 0, 645120, 0, -5419008, 0, 30965760, 46448640, 20643840 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS T(n,k) is a weighted binomial sum of the Bernoulli numbers A027641/A027642 with A027641(1) = 1, which amounts to the definition B_{n} = B_{n}(1). LINKS FORMULA T(n,k) = (n+1)!*C(n,k)*B_{n-k}*2^(k+1)/(k+1). T(n,n) = A066318(n+1) = n!*2^(n+1) (necklaces with n labeled beads of 2 colors; see also A032184). Sum_{k=0..n} T(n,k) = A052584(n+1) = (n+1)!*(1+2^n). EXAMPLE 2 2, 4 2, 12, 16 0, 24, 96, 96 -8, 0, 320, 960, 768 0, -240, 0, 4800, 11520, 7680 240, 0, -6720, 0, 80640, 161280, 92160 MAPLE T := (n, k) -> (n+1)!*binomial(n, k)*bernoulli(n-k, 1)*2^(k+1)/(k+1); MATHEMATICA T[n_, k_] := (n+1)! Binomial[n, k] BernoulliB[n-k, 1] 2^(k+1)/(k+1); Table[T[n, k], {n, 0, 8}, {k, 0, n}] (* Jean-François Alcover, Jun 17 2019 *) CROSSREFS Cf. A027641, A027642, A052584. Sequence in context: A059427 A137777 A126984 * A227293 A331391 A102416 Adjacent sequences:  A159746 A159747 A159748 * A159750 A159751 A159752 KEYWORD sign,tabl AUTHOR Peter Luschny, Apr 20 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 11 03:49 EDT 2021. Contains 343784 sequences. (Running on oeis4.)