login
A159749
The decomposition of a certain labeled universe (A052584), triangle read by rows.
1
2, 2, 4, 2, 12, 16, 0, 24, 96, 96, -8, 0, 320, 960, 768, 0, -240, 0, 4800, 11520, 7680, 240, 0, -6720, 0, 80640, 161280, 92160, 0, 13440, 0, -188160, 0, 1505280, 2580480, 1290240, -24192, 0, 645120, 0, -5419008, 0, 30965760, 46448640, 20643840
OFFSET
0,1
COMMENTS
T(n,k) is a weighted binomial sum of the Bernoulli numbers A027641/A027642 with A027641(1) = 1, which amounts to the definition B_{n} = B_{n}(1).
FORMULA
T(n,k) = (n+1)!*C(n,k)*B_{n-k}*2^(k+1)/(k+1).
T(n,n) = A066318(n+1) = n!*2^(n+1) (necklaces with n labeled beads of 2 colors; see also A032184).
Sum_{k=0..n} T(n,k) = A052584(n+1) = (n+1)!*(1+2^n).
EXAMPLE
2
2, 4
2, 12, 16
0, 24, 96, 96
-8, 0, 320, 960, 768
0, -240, 0, 4800, 11520, 7680
240, 0, -6720, 0, 80640, 161280, 92160
MAPLE
T := (n, k) -> (n+1)!*binomial(n, k)*bernoulli(n-k, 1)*2^(k+1)/(k+1);
MATHEMATICA
T[n_, k_] := (n+1)! Binomial[n, k] BernoulliB[n-k, 1] 2^(k+1)/(k+1);
Table[T[n, k], {n, 0, 8}, {k, 0, n}] (* Jean-François Alcover, Jun 17 2019 *)
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Apr 20 2009
STATUS
approved