login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129824
a(n) = Product_{k=0..n} (1 + binomial(n,k)).
3
2, 4, 12, 64, 700, 17424, 1053696, 160579584, 62856336636, 63812936890000, 168895157342195152, 1169048914836855865344, 21209591746609937928524800, 1010490883477487017627972550656, 126641164340871500483202065902080000, 41817338589698457759723104703370865147904
OFFSET
0,1
COMMENTS
A product analog of the binomial expansion.
The sequence is a special case of a(n) = Product_{k=0..n} (1 + binomial(n,k)*x^k).
Let C be a collection of subsets of an n-element set S. Then a(n) is the number of possible shapes K = (k_0, ..., k_n) of C, where k_i is the number of i-element subsets of S in C. - Gabriel Cunningham (oeis(AT)gabrielcunningham.com), Nov 08 2007
REFERENCES
H. W. Gould, A product analog of the binomial expansion, unpublished manuscript, Jun 03 2007.
LINKS
FORMULA
a(n) = 2*A055612(n). - Reinhard Zumkeller, Jan 31 2015
a(n) ~ exp(n^2/2 + n - 1/12) * A^2 / (n^(n/2 + 1/3) * 2^((n-3)/2) * Pi^((n+1)/2)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Oct 27 2017
EXAMPLE
a(4) = (1+1)(1+4)(1+6)(1+4)(1+1) = 2*5*7*5*2 = 700.
MATHEMATICA
Table[Product[1 + Binomial[n, k], {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Oct 27 2017 *)
PROG
(PARI) { a(n) = prod(k=0, n, 1 + binomial(n, k))}
for(n=0, 15, print1(a(n), ", ")) \\ Paul D. Hanna, Oct 27 2017
(Magma)
A129824:= func< n | (&*[1 + Binomial(n, k): k in [0..n]]) >;
[A129824(n): n in [0..20]]; // G. C. Greubel, Apr 26 2024
(SageMath)
def A129824(n): return product(1 + binomial(n, k) for k in range(n+1))
[A129824(n) for n in range(21)] # G. C. Greubel, Apr 26 2024
CROSSREFS
Sequence in context: A136512 A137160 A217716 * A266463 A013207 A172165
KEYWORD
easy,nonn
AUTHOR
Henry Gould, Jun 03 2007
EXTENSIONS
Corrected and extended by Vaclav Kotesovec, Oct 27 2017
STATUS
approved