login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Product_{k=0..n} (1 + binomial(n,k)).
3

%I #21 Apr 26 2024 05:53:54

%S 2,4,12,64,700,17424,1053696,160579584,62856336636,63812936890000,

%T 168895157342195152,1169048914836855865344,21209591746609937928524800,

%U 1010490883477487017627972550656,126641164340871500483202065902080000,41817338589698457759723104703370865147904

%N a(n) = Product_{k=0..n} (1 + binomial(n,k)).

%C A product analog of the binomial expansion.

%C The sequence is a special case of a(n) = Product_{k=0..n} (1 + binomial(n,k)*x^k).

%C Let C be a collection of subsets of an n-element set S. Then a(n) is the number of possible shapes K = (k_0, ..., k_n) of C, where k_i is the number of i-element subsets of S in C. - Gabriel Cunningham (oeis(AT)gabrielcunningham.com), Nov 08 2007

%D H. W. Gould, A product analog of the binomial expansion, unpublished manuscript, Jun 03 2007.

%H G. C. Greubel, <a href="/A129824/b129824.txt">Table of n, a(n) for n = 0..69</a>

%F a(n) = 2*A055612(n). - _Reinhard Zumkeller_, Jan 31 2015

%F a(n) ~ exp(n^2/2 + n - 1/12) * A^2 / (n^(n/2 + 1/3) * 2^((n-3)/2) * Pi^((n+1)/2)), where A is the Glaisher-Kinkelin constant A074962. - _Vaclav Kotesovec_, Oct 27 2017

%e a(4) = (1+1)(1+4)(1+6)(1+4)(1+1) = 2*5*7*5*2 = 700.

%t Table[Product[1 + Binomial[n,k], {k,0,n}], {n,0,15}] (* _Vaclav Kotesovec_, Oct 27 2017 *)

%o (PARI) { a(n) = prod(k=0,n, 1 + binomial(n,k))}

%o for(n=0,15,print1(a(n),", ")) \\ _Paul D. Hanna_, Oct 27 2017

%o (Magma)

%o A129824:= func< n | (&*[1 + Binomial(n,k): k in [0..n]]) >;

%o [A129824(n): n in [0..20]]; // _G. C. Greubel_, Apr 26 2024

%o (SageMath)

%o def A129824(n): return product(1 + binomial(n,k) for k in range(n+1))

%o [A129824(n) for n in range(21)] # _G. C. Greubel_, Apr 26 2024

%Y Cf. A001142, A055612.

%K easy,nonn

%O 0,1

%A _Henry Gould_, Jun 03 2007

%E Corrected and extended by _Vaclav Kotesovec_, Oct 27 2017