login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Odd numbered terms of the sequence whose n-th term is the (n-1)-st elementary symmetric function of (i, 2i, 3i, ..., ni), where i=sqrt(-1).
2

%I #26 Oct 26 2016 18:52:18

%S 3,-50,1764,-109584,10628640,-1486442880,283465647360,-70734282393600,

%T 22376988058521600,-8752948036761600000,4148476779335454720000,

%U -2342787216398718566400000,1554454559147562279567360000

%N Odd numbered terms of the sequence whose n-th term is the (n-1)-st elementary symmetric function of (i, 2i, 3i, ..., ni), where i=sqrt(-1).

%F a(n) = (-1)^(n+1)*(2*n)!*Sum_{i=1..2n} 1/i. - _Arkadiusz Wesolowski_, Mar 25 2013

%F From _Anton Zakharov_, Oct 26 2016: (Start)

%F a(n) = (-1)^(n+1)*Sum_{k=1..n} A094310(2n,k).

%F (-1)^(n+1)*a(n) = A000254(2n) (signed bisection of A000254). (End)

%e The first 10 terms of the "full sequence" are as follows:

%e 1, 3i, -11, -50i, 274, 1764i, -13068, -109584i, 1026576, 10628640i;

%e Abbreviate "elementary symmetric function" as esf. Then, starting with {i, 2i, 3i, 4i, ...}:

%e 0th esf of {i}: 1

%e 1st esf of {i, 2i}: i+2i = 3i

%e 2nd esf of {i, 2i, 3i}: -2-3-6 = -11.

%e For the alternating terms 3i, -50i, ..., see A203240.

%t f[k_] := k*I; t[n_] := Table[f[k], {k, 1, n}]

%t a[n_] := SymmetricPolynomial[n - 1, t[n]]

%t Table[a[n], {n, 1, 22}]

%t Table[-I*a[2 n], {n, 1, 22}] (* A203239 *)

%t Table[a[2 n - 1], {n, 1, 22}] (* A203240 *)

%t Table[(-1)^(n + 1)*(2*n)!*HarmonicNumber[2*n], {n, 13}] (* _Arkadiusz Wesolowski_, Mar 25 2013 *)

%Y Cf. A000254, A094310, A165675, A203240.

%K sign

%O 1,1

%A _Clark Kimberling_, Dec 30 2011