The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A245139 E.g.f.: (cosh(2*x) + sinh(2*x)*cosh(x)) / sqrt(1 - sinh(x)^2*sinh(2*x)^2). 4
 1, 2, 4, 14, 64, 602, 5344, 58214, 661504, 9666482, 145897984, 2611988414, 47548524544, 1002692887562, 21581168410624, 527328466446614, 13084553110749184, 362312592419199842, 10175324275879051264, 315223836841156264814, 9889646730551557095424, 338833067799589889659322 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Limit (a(n)/n!)^(-1/n) = log(t) = 0.609377863436... where t is the tribonacci constant and satisfies 1 + t + t^2 = t^3. LINKS FORMULA E.g.f.: G(x) * (cosh(x) - sinh(x)*cosh(2*x)) / sqrt(1 - sinh(x)^2*sinh(2*x)^2), where G(x) is the e.g.f. of A245140. EXAMPLE E.g.f.: A(x) = 1 + 2*x + 4*x^2/2! + 14*x^3/3! + 64*x^4/4! + 602*x^5/5! +... Let A(x) = A0(x) + A1(x) where A0(x) = 1 + 4*x^2/2! + 64*x^4/4! + 5344*x^6/6! + 661504*x^8/8! +... A1(x) = 2*x + 14*x^3/3! + 602*x^5/5! + 58214*x^7/7! + 9666482*x^9/9! +... then A0(x)^2 - A1(x)^2 = 1. Note that the logarithm of the e.g.f. is an odd function: Log(A(x)) = 2*x + 6*x^3/3! + 330*x^5/5! + 21966*x^7/7! + 3507090*x^9/9! + 844747926*x^11/11! + 299180549850*x^13/13! +... thus A(x)*A(-x) = 1. PROG (PARI) {a(n)=local(X=x+x^2*O(x^n)); n!*polcoeff((cosh(2*X) + sinh(2*X)*cosh(X)) / sqrt(1 - sinh(X)^2*sinh(2*X)^2), n)} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A245138, A245140, A245154, A245165. Sequence in context: A132079 A055790 A322623 * A020131 A261002 A032147 Adjacent sequences:  A245136 A245137 A245138 * A245140 A245141 A245142 KEYWORD nonn AUTHOR Paul D. Hanna, Jul 12 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 21:30 EST 2020. Contains 331128 sequences. (Running on oeis4.)