login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245154
E.g.f.: (cosh(3*x) + sinh(3*x)*cosh(x)) / sqrt(1 - sinh(x)^2*sinh(3*x)^2).
4
1, 3, 9, 36, 189, 2148, 26109, 371136, 5407929, 95795568, 1832049009, 41428038336, 972380766069, 25736128903488, 705111069908709, 21600790506395136, 683861855417706609, 23836956839153265408, 853476673589938069209, 33263825890074489025536
OFFSET
0,2
COMMENTS
Limit (a(n)/n!)^(-1/n) = log( (1+sqrt(5))/2 ) = 0.4812118250596...
FORMULA
E.g.f.: G(x) * (cosh(x) - sinh(x)*cosh(3*x)) / sqrt(1 - sinh(x)^2*sinh(3*x)^2), where G(x) is the e.g.f. of A245155.
a(n) ~ 2*sqrt(2) * n^n / (5^(1/4) * exp(n) * (log((1+sqrt(5))/2))^(n+1/2)). - Vaclav Kotesovec, Nov 04 2014
EXAMPLE
E.g.f.: A(x) = 1 + 3*x + 9*x^2/2! + 36*x^3/3! + 189*x^4/4! + 2148*x^5/5! +...
Let A(x) = A0(x) + A1(x) where
A0(x) = 1 + 9*x^2/2! + 189*x^4/4! + 26109*x^6/6! + 5407929*x^8/8! +...
A1(x) = 3*x + 36*x^3/3! + 2148*x^5/5! + 371136*x^7/7! + 95795568*x^9/9! +...
then A0(x)^2 - A1(x)^2 = 1.
Note that the logarithm of the e.g.f. is an odd function:
Log(A(x)) = 3*x + 9*x^3/3! + 1095*x^5/5! + 119469*x^7/7! + 28399275*x^9/9! + 11494484529*x^11/11! + 6432743099055*x^13/13! +...
thus A(x)*A(-x) = 1.
PROG
(PARI) {a(n)=local(X=x+x^2*O(x^n)); n!*polcoeff((cosh(3*X) + sinh(3*X)*cosh(X)) / sqrt(1 - sinh(X)^2*sinh(3*X)^2), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 12 2014
STATUS
approved