login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245157
G.f.: Sum_{n>=0} x^n/((1+x)^(2*n+1)*(1 - (2*n+1)*x)).
2
1, 1, 2, 7, 25, 108, 525, 2841, 16926, 109795, 768721, 5769848, 46170841, 392042257, 3517885530, 33240220095, 329703176361, 3423448119588, 37121182883557, 419414109036649, 4927952017449398, 60105139223521051, 759744837538329121, 9937680363610804080, 134328047043765078705
OFFSET
0,3
COMMENTS
Inspired by Peter Bala's formula in A229046.
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 25*x^4 + 108*x^5 + 525*x^6 +...
where
A(x) = 1/((1+x)*(1-x)) + x/((1+x)^3*(1-3*x)) + x^2/((1+x)^5*(1-5*x))+ x^3/((1+x)^7*(1-7*x))+ x^4/((1+x)^9*(1-9*x)) + x^5/((1+x)^11*(1-11*x)) +...
PROG
(PARI) {a(n)=polcoeff( sum(m=0, n, x^m/((1+x)^(2*m+1)*(1 - (2*m+1)*x) +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A074420 A005034 A350796 * A150533 A150534 A150535
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 15 2014
STATUS
approved