login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245155
E.g.f.: (cosh(3*x) + sinh(3*x)*cosh(x)) / (cosh(x) - sinh(x)*cosh(3*x)).
6
1, 4, 16, 100, 832, 8644, 107776, 1567780, 26063872, 487466884, 10129985536, 231560895460, 5774444019712, 155997355725124, 4538464905527296, 141469868440031140, 4703786933664612352, 166172927821116399364, 6215792183431115309056, 245422172388559255422820
OFFSET
0,2
COMMENTS
Limit (a(n)/n!)^(-1/n) = log(t) = 0.4812118250596... where t = (1+sqrt(5))/2 satisfies 1 + t + t^3 = t^4.
FORMULA
E.g.f.: (cosh(x) + sinh(x)*cosh(3*x)) * (cosh(3*x) + sinh(3*x)*cosh(x)) / (1 - sinh(x)^2*sinh(3*x)^2).
E.g.f.: (cosh(x)*cosh(3*x) + sinh(x) + sinh(3*x)) / (1 - sinh(x)*sinh(3*x)). - Paul D. Hanna, Dec 22 2018
E.g.f.: A(x) = B(x)*C(x), where B(x) and C(x) are the e.g.f.s of A245153 and A245154, respectively.
Let e.g.f. A(x) = A0(x) + A1(x) where A0(x) = (A(x)+A(-x))/2 and A1(x) = (A(x)-A(-x))/2, then:
(1) A0(x)^2 - A1(x)^2 = 1.
(2) exp(x) = (A0(x) + A1(x)*cosh(3*x)) * (cosh(3*x) - sinh(3*x)*A0(x)) / (1 - sinh(3*x)^2*A1(x)^2).
(3) exp(3*x) = (A0(x) + A1(x)*cosh(x)) * (cosh(x) - sinh(x)*A0(x)) / (1 - sinh(x)^2*A1(x)^2).
From Paul D. Hanna, Dec 22 2018: (Start)
(4) exp(x) = (A0(x)*cosh(3*x) + A1(x) - sinh(3*x)) / ((1 + sinh(3*x)*A1(x)).
(5) exp(3*x) = (A0(x)*cosh(x) + A1(x) - sinh(x)) / ((1 + sinh(x)*A1(x)). (End)
FORMULAS FOR TERMS.
From Paul D. Hanna, Dec 22 2018: (Start)
a(n) = Sum_{k=0..n} 3^k * A322620(n,k).
a(n) = Sum_{k=0..n} 3^k * binomial(n,k) * A322190(n,k). (End)
a(n) ~ 2*sqrt(2*Pi/5) * n^(n+1/2) / (exp(n) * (log((1+sqrt(5))/2))^(n+1)). - Vaclav Kotesovec, Nov 04 2014
EXAMPLE
E.g.f.: A(x) = 1 + 4*x + 16*x^2/2! + 100*x^3/3! + 832*x^4/4! + 8644*x^5/5! +...
such that A(x) = B(x)*C(x), where
B(x) = 1 + x + x^2/2! + 28*x^3/3! + 109*x^4/4! + 1036*x^5/5! + 12421*x^6/6! +...
C(x) = 1 + 3*x + 9*x^2/2! + 36*x^3/3! + 189*x^4/4! + 2148*x^5/5! + 26109*x^6/6! +...
are the e.g.f.s of A245153 and A245154, respectively.
Let A(x) = A0(x) + A1(x) where
A0(x) = 1 + 16*x^2/2! + 832*x^4/4! + 107776*x^6/6! + 26063872*x^8/8! +...
A1(x) = 4*x + 100*x^3/3! + 8644*x^5/5! + 1567780*x^7/7! + 487466884*x^9/9! +...
then A0(x)^2 - A1(x)^2 = 1.
Note that the logarithm is an odd function:
log(A(x)) = 4*x + 36*x^3/3! + 1860*x^5/5! + 240996*x^7/7! + 58280580*x^9/9! + 22651336356*x^11/11! + 12912049359300*x^13/13! + 10148316042271716*x^15/15! +...
thus A(x)*A(-x) = 1.
PROG
(PARI) {a(n)=local(X=x+x^2*O(x^n)); n!*polcoeff( (cosh(3*X) + sinh(3*X)*cosh(X)) / (cosh(X) - sinh(X)*cosh(3*X)), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=local(X=x+x^2*O(x^n)); n!*polcoeff((cosh(X) + sinh(X)*cosh(3*X)) * (cosh(3*X) + sinh(3*X)*cosh(X)) / (1 - sinh(X)^2*sinh(3*X)^2), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 12 2014
STATUS
approved