OFFSET
3,2
LINKS
Peter C. Fishburn and Fred S. Roberts, Elementary sequences, sub-Fibonacci sequences, Discrete Appl. Math. 44 (1993), no. 1-3, 261-281.
FORMULA
See the Maple program; f[k](x,y,z) is the number of sequences s[1], s[2], ..., s[k+3] such that s[1]=x, s[2]=y, s[3]=z, s[j-1] <=s[j] <= s[j-3]+s[j-2]+s[j-1].
EXAMPLE
a(5)=9 because we have (1,1,1,1,1), (1,1,1,1,2), (1,1,1,1,3), (1,1,1,2,2), (1,1,1,2,3), (1,1,1,2,4), (1,1,1,3,3), (1,1,1,3,4), (1,1,1,3,5).
MAPLE
f[0]:=1:for k from 0 to 20 do f[k+1]:=factor(sum(subs({x=y, y=z, z=u}, f[k]), u=z..x+y+z)) od: seq(subs({x=1, y=1, z=1}, f[k]), k=0..20);
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Feb 14 2007
STATUS
approved