login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128096
Number of steps that touch the x-axis in all peakless Motzkin paths of length n.
1
1, 2, 5, 12, 27, 62, 144, 336, 790, 1870, 4452, 10656, 25629, 61910, 150145, 365450, 892434, 2185928, 5369097, 13221422, 32634935, 80730942, 200116410, 496992992, 1236482727, 3081389406, 7690966549, 19224282880, 48119034729, 120599916654
OFFSET
1,2
COMMENTS
a(n)=Sum(k*A128095(n,k), k=1..n).
FORMULA
G.f.=4[1-z^2-sqrt((1+z+z^2)(1-3z+z^2))]/[1-z+z^2+sqrt((1+z+z^2)(1-3z+z^2))]^2.
Conjecture: -2*(n+4)*(1088*n-4241)*a(n) +(6616*n^2-12361*n-59102)*a(n-1) +2*(-1176*n^2+6520*n-4985)*a(n-2) +(2088*n^2-6071*n+16522) *a(n-3) +2*(-3352*n^2+22882*n-35653)*a(n-4) +(2264*n-6277)*(n-6) *a(n-5)=0. - R. J. Mathar, Jun 17 2016
EXAMPLE
a(3)=5 because in the peakless Motzkin paths of length 3 (namely HHH and UHD, where H=(1,0), U=(1,1) and D=(1,-1)) all the steps, with the exception of H in UHD, touch the x-axis.
MAPLE
g:=4*(1-z^2-sqrt((1+z+z^2)*(1-3*z+z^2)))/(1-z+z^2+sqrt((1+z+z^2)*(1-3*z+z^2)))^2: gser:=series(g, z=0, 38): seq(coeff(gser, z, n), n=1..35);
CROSSREFS
Cf. A128095.
Sequence in context: A077863 A319172 A018009 * A018010 A303022 A026710
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Feb 14 2007
STATUS
approved