login
A303022
Number of free pure symmetric multifunctions (with empty expressions allowed) with one atom, n positions, and no unitary parts (subexpressions of the form x[y]).
6
1, 1, 1, 2, 5, 12, 27, 63, 152, 376, 939, 2371, 6047, 15577, 40429, 105637, 277625, 733518, 1947126, 5190503, 13888811, 37291968, 100444019, 271316998, 734802247, 1994873116, 5427893149, 14799525982, 40429761365, 110645688034, 303316712450, 832799212777
OFFSET
1,4
COMMENTS
Also the number of orderless Mathematica expressions with one atom, n positions, and no unitary parts.
LINKS
EXAMPLE
The a(6) = 12 Mathematica expressions:
o[o,o[][]]
o[o[],o[]]
o[o,o,o[]]
o[o,o,o,o]
o[][o,o[]]
o[][o,o,o]
o[][][o,o]
o[o,o[]][]
o[o,o,o][]
o[][o,o][]
o[o,o][][]
o[][][][][]
MATHEMATICA
allOLBF[n_]:=allOLBF[n]=If[n==1, {"o"}, Join@@Cases[Table[PR[k, n-k-1], {k, n-1}], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{allOLBF[h], Select[Union[Sort/@Tuples[allOLBF/@p]], Length[#]!=1&]}], {p, IntegerPartitions[g]}]]];
Table[Length[allOLBF[n]], {n, 10}]
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
seq(n)={my(v=[1]); for(n=2, n, my(t=EulerT(v)-v); v=concat(v, v[n-1] + sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ Andrew Howroyd, Aug 19 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 15 2018
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Aug 19 2018
STATUS
approved