Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Nov 04 2014 12:32:01
%S 1,3,9,36,189,2148,26109,371136,5407929,95795568,1832049009,
%T 41428038336,972380766069,25736128903488,705111069908709,
%U 21600790506395136,683861855417706609,23836956839153265408,853476673589938069209,33263825890074489025536
%N E.g.f.: (cosh(3*x) + sinh(3*x)*cosh(x)) / sqrt(1 - sinh(x)^2*sinh(3*x)^2).
%C Limit (a(n)/n!)^(-1/n) = log( (1+sqrt(5))/2 ) = 0.4812118250596...
%F E.g.f.: G(x) * (cosh(x) - sinh(x)*cosh(3*x)) / sqrt(1 - sinh(x)^2*sinh(3*x)^2), where G(x) is the e.g.f. of A245155.
%F a(n) ~ 2*sqrt(2) * n^n / (5^(1/4) * exp(n) * (log((1+sqrt(5))/2))^(n+1/2)). - _Vaclav Kotesovec_, Nov 04 2014
%e E.g.f.: A(x) = 1 + 3*x + 9*x^2/2! + 36*x^3/3! + 189*x^4/4! + 2148*x^5/5! +...
%e Let A(x) = A0(x) + A1(x) where
%e A0(x) = 1 + 9*x^2/2! + 189*x^4/4! + 26109*x^6/6! + 5407929*x^8/8! +...
%e A1(x) = 3*x + 36*x^3/3! + 2148*x^5/5! + 371136*x^7/7! + 95795568*x^9/9! +...
%e then A0(x)^2 - A1(x)^2 = 1.
%e Note that the logarithm of the e.g.f. is an odd function:
%e Log(A(x)) = 3*x + 9*x^3/3! + 1095*x^5/5! + 119469*x^7/7! + 28399275*x^9/9! + 11494484529*x^11/11! + 6432743099055*x^13/13! +...
%e thus A(x)*A(-x) = 1.
%o (PARI) {a(n)=local(X=x+x^2*O(x^n)); n!*polcoeff((cosh(3*X) + sinh(3*X)*cosh(X)) / sqrt(1 - sinh(X)^2*sinh(3*X)^2), n)}
%o for(n=0, 30, print1(a(n), ", "))
%Y Cf. A245153, A245155, A245139, A245165.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Jul 12 2014