login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245138
E.g.f.: (cosh(x) + sinh(x)*cosh(2*x)) / sqrt(1 - sinh(x)^2*sinh(2*x)^2).
4
1, 1, 1, 13, 49, 361, 3121, 39733, 409249, 6410641, 91979041, 1716516253, 29795642449, 660718214521, 13656276138961, 345794520085573, 8290832204163649, 237409681243284001, 6465138777774530881, 206263448435258395693, 6296129943088315156849, 221484543685548532051081
OFFSET
0,4
COMMENTS
Limit (a(n)/n!)^(-1/n) = log(t) = 0.609377863436... where t is the tribonacci constant and satisfies 1 + t + t^2 = t^3.
FORMULA
E.g.f.: G(x) * (cosh(2*x) - sinh(2*x)*cosh(x)) / sqrt(1 - sinh(x)^2*sinh(2*x)^2), where G(x) is the e.g.f. of A245140.
EXAMPLE
E.g.f.: A(x) = 1 + x + x^2/2! + 13*x^3/3! + 49*x^4/4! + 361*x^5/5! +...
Let A(x) = A0(x) + A1(x) where
A0(x) = 1 + x^2/2! + 49*x^4/4! + 3121*x^6/6! + 409249*x^8/8! + 91979041*x^10/10! +...
A1(x) = x + 13*x^3/3! + 361*x^5/5! + 39733*x^7/7! + 6410641*x^9/9! +...
then A0(x)^2 - A1(x)^2 = 1.
Note that the logarithm of the e.g.f. is an odd function:
Log(A(x)) = x + 12*x^3/3! + 240*x^5/5! + 24192*x^7/7! + 3452160*x^9/9! + 841961472*x^11/11! + 300389806080*x^13/13! +...
thus A(x)*A(-x) = 1.
MATHEMATICA
With[{nn=30}, CoefficientList[Series[(Cosh[x]+Sinh[x]Cosh[2x])/Sqrt[1-Sinh[x]^2 Sinh[2x]^2], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Oct 29 2017 *)
PROG
(PARI) {a(n)=local(X=x+x^2*O(x^n)); n!*polcoeff((cosh(X) + sinh(X)*cosh(2*X)) / sqrt(1 - sinh(X)^2*sinh(2*X)^2), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 12 2014
STATUS
approved