login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373620
Expansion of e.g.f. exp(x / (1 - x^2)^2).
5
1, 1, 1, 13, 49, 481, 3841, 38221, 464353, 5368609, 82042561, 1151767981, 20242097041, 342921513793, 6705416722369, 133590317946541, 2880298682358721, 65597610230669761, 1556262483879791233, 39569880403136366029, 1030778206965403668721
OFFSET
0,4
FORMULA
a(n) = n! * Sum_{k=0..floor(n/2)} binomial(2*n-3*k-1,k)/(n-2*k)!.
a(n) == 1 mod 12.
a(n) ~ 2^(-1/6) * 3^(-1/2) * exp(1/48 + 2^(-5/3)*n^(1/3) + 3*2^(-4/3)*n^(2/3) - n) * n^(n - 1/6). - Vaclav Kotesovec, Jun 11 2024
D-finite with recurrence a(n) -a(n-1) -3*(n-1)*(n-2)*a(n-2) -3*(n-1)*(n-2)*a(n-3) +3*(n-1)*(n-2)*(n-3)*(n-4)*a(n-4) -(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n-6)*a(n-6)=0. - R. J. Mathar, Jun 11 2024
MAPLE
A373620 := proc(n)
add(binomial(2*n-3*k-1, k)/(n-2*k)!, k=0..floor(n/2)) ;
%*n! ;
end proc:
seq(A373620(n), n=0..80) ; # R. J. Mathar, Jun 11 2024
PROG
(PARI) a(n) = n!*sum(k=0, n\2, binomial(2*n-3*k-1, k)/(n-2*k)!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 11 2024
STATUS
approved