OFFSET
0,4
FORMULA
a(n) = n! * Sum_{k=0..floor(n/2)} binomial(2*n-3*k-1,k)/(n-2*k)!.
a(n) == 1 mod 12.
a(n) ~ 2^(-1/6) * 3^(-1/2) * exp(1/48 + 2^(-5/3)*n^(1/3) + 3*2^(-4/3)*n^(2/3) - n) * n^(n - 1/6). - Vaclav Kotesovec, Jun 11 2024
D-finite with recurrence a(n) -a(n-1) -3*(n-1)*(n-2)*a(n-2) -3*(n-1)*(n-2)*a(n-3) +3*(n-1)*(n-2)*(n-3)*(n-4)*a(n-4) -(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n-6)*a(n-6)=0. - R. J. Mathar, Jun 11 2024
MAPLE
A373620 := proc(n)
add(binomial(2*n-3*k-1, k)/(n-2*k)!, k=0..floor(n/2)) ;
%*n! ;
end proc:
seq(A373620(n), n=0..80) ; # R. J. Mathar, Jun 11 2024
PROG
(PARI) a(n) = n!*sum(k=0, n\2, binomial(2*n-3*k-1, k)/(n-2*k)!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 11 2024
STATUS
approved