login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239771
Number of pairs of functions (f,g) from a size n set into itself satisfying f(x) = g(g(f(x))).
4
1, 1, 10, 213, 8056, 465945, 37823616, 4075467781, 560230714240, 95369455852497, 19643693349548800, 4805295720474420501, 1374890520609054683136, 454286686896040037996905, 171479277693049020232695808, 73262491601904459123264721125, 35143072854722729593790081499136
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} C(n,k) * A048993(n,k) * k! * A245348(n,k). - Alois P. Heinz, Jul 18 2014
MAPLE
g:= proc(n) g(n):= `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end:
a:= n-> add(binomial(n, k)*Stirling2(n, k)*k!*
add(binomial(n-k, i)*binomial(k, i)*i!*
g(k-i)*n^(n-k-i), i=0..min(k, n-k)), k=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 18 2014
MATHEMATICA
g[n_] := g[n] = If[n < 2, 1, g[n-1] + (n-1)*g[n-2]];
a[n_] := If[n == 0, 1, Sum[Binomial[n, k]*StirlingS2[n, k]*k!*Sum[ Binomial[n-k, i]*Binomial[k, i]*i!*g[k-i]*n^(n-k-i), {i, 0, Min[k, n-k]} ], {k, 0, n}]];
a /@ Range[0, 20] (* Jean-François Alcover, Oct 03 2019, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Chad Brewbaker, Mar 26 2014
EXTENSIONS
a(6)-a(7) from Giovanni Resta, Mar 28 2014
a(8)-a(16) from Alois P. Heinz, Jul 18 2014
STATUS
approved