login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245981
Number of pairs of endofunctions f, g on [n] satisfying g^4(f(i)) = f(i) for all i in [n].
2
1, 1, 10, 213, 9592, 682545, 69119136, 9284636221, 1597922254720, 344058384011553, 90769698354764800, 28762381447366581861, 10751918763610399942656, 4671451080680229243978385, 2331208959412708894563057664, 1323549917511104579568688414125
OFFSET
0,3
LINKS
MAPLE
with(combinat): M:=multinomial:
b:= proc(n, k) local l, g; l, g:= [1, 2, 4],
proc(k, m, i, t) option remember; local d, j; d:= l[i];
`if`(i=1, n^m, add(M(k, k-(d-t)*j, (d-t)$j)/j!*
(d-1)!^j *M(m, m-t*j, t$j) *g(k-(d-t)*j, m-t*j,
`if`(d-t=1, [i-1, 0], [i, t+1])[]), j=0..min(k/(d-t),
`if`(t=0, [][], m/t))))
end; g(k, n-k, nops(l), 0)
end:
a:= n-> add(b(n, j)*stirling2(n, j)*binomial(n, j)*j!, j=0..n):
seq(a(n), n=0..20);
CROSSREFS
Column k=4 of A245980.
Sequence in context: A239771 A245987 A332408 * A245985 A309737 A211912
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 08 2014
STATUS
approved