login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A245983
Number of pairs of endofunctions f, g on [n] satisfying g^6(f(i)) = f(i) for all i in [n].
2
1, 1, 10, 267, 12040, 826245, 86252976, 12661148311, 2428606888576, 585229569018921, 172640322717932800, 60933514918456147011, 25283156000087876668416, 12189356237264450125373869, 6769905753950075837079906304, 4297777320612236566890778059375
OFFSET
0,3
LINKS
MAPLE
with(combinat): M:=multinomial:
b:= proc(n, k) local l, g; l, g:= [1, 2, 3, 6],
proc(k, m, i, t) option remember; local d, j; d:= l[i];
`if`(i=1, n^m, add(M(k, k-(d-t)*j, (d-t)$j)/j!*
(d-1)!^j *M(m, m-t*j, t$j) *g(k-(d-t)*j, m-t*j,
`if`(d-t=1, [i-1, 0], [i, t+1])[]), j=0..min(k/(d-t),
`if`(t=0, [][], m/t))))
end; g(k, n-k, nops(l), 0)
end:
a:= n->add(b(n, j)*stirling2(n, j)*binomial(n, j)*j!, j=0..n):
seq(a(n), n=0..20);
CROSSREFS
Column k=6 of A245980.
Sequence in context: A003388 A322564 A055408 * A336027 A166811 A089906
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 08 2014
STATUS
approved