%I #5 Aug 09 2014 12:08:40
%S 1,1,10,267,12040,826245,86252976,12661148311,2428606888576,
%T 585229569018921,172640322717932800,60933514918456147011,
%U 25283156000087876668416,12189356237264450125373869,6769905753950075837079906304,4297777320612236566890778059375
%N Number of pairs of endofunctions f, g on [n] satisfying g^6(f(i)) = f(i) for all i in [n].
%H Alois P. Heinz, <a href="/A245983/b245983.txt">Table of n, a(n) for n = 0..100</a>
%p with(combinat): M:=multinomial:
%p b:= proc(n, k) local l, g; l, g:= [1, 2, 3, 6],
%p proc(k, m, i, t) option remember; local d, j; d:= l[i];
%p `if`(i=1, n^m, add(M(k, k-(d-t)*j, (d-t)$j)/j!*
%p (d-1)!^j *M(m, m-t*j, t$j) *g(k-(d-t)*j, m-t*j,
%p `if`(d-t=1, [i-1, 0], [i, t+1])[]), j=0..min(k/(d-t),
%p `if`(t=0, [][], m/t))))
%p end; g(k, n-k, nops(l), 0)
%p end:
%p a:= n->add(b(n, j)*stirling2(n, j)*binomial(n, j)*j!, j=0..n):
%p seq(a(n), n=0..20);
%Y Column k=6 of A245980.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Aug 08 2014