login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245986
Number of pairs of endofunctions f, g on [n] satisfying g^9(f(i)) = f(i) for all i in [n].
2
1, 1, 6, 141, 6184, 387545, 33404256, 3891981205, 592320594048, 128805405787953, 43012267760166400, 19329826195760619341, 10086545470056599549952, 5787171311384573282516617, 3623228151360430287454531584, 2480483584581055916081566933125
OFFSET
0,3
LINKS
MAPLE
with(combinat): M:=multinomial:
b:= proc(n, k) local l, g; l, g:= [1, 3, 9],
proc(k, m, i, t) option remember; local d, j; d:= l[i];
`if`(i=1, n^m, add(M(k, k-(d-t)*j, (d-t)$j)/j!*
(d-1)!^j *M(m, m-t*j, t$j) *g(k-(d-t)*j, m-t*j,
`if`(d-t=1, [i-1, 0], [i, t+1])[]), j=0..min(k/(d-t),
`if`(t=0, [][], m/t))))
end; g(k, n-k, nops(l), 0)
end:
a:= n-> add(b(n, j)*stirling2(n, j)*binomial(n, j)*j!, j=0..n):
seq(a(n), n=0..20);
CROSSREFS
Column k=9 of A245980.
Sequence in context: A193502 A059488 A241015 * A225810 A067196 A286446
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 08 2014
STATUS
approved