login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245989
Number of length n 0..2 arrays with no pair in any consecutive three terms totalling exactly 2.
1
1, 3, 6, 8, 12, 18, 26, 38, 56, 82, 120, 176, 258, 378, 554, 812, 1190, 1744, 2556, 3746, 5490, 8046, 11792, 17282, 25328, 37120, 54402, 79730, 116850, 171252, 250982, 367832, 539084, 790066, 1157898, 1696982, 2487048, 3644946, 5341928, 7828976, 11473922
OFFSET
0,2
COMMENTS
Also, number of length n ternary words with no pair of equal consecutive letters and avoiding the subwords 010, 101, 020, 202. - Miquel A. Fiol, Dec 22 2023
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..2000 (210 terms from R. H. Hardin)
FORMULA
a(n) = a(n-1) + a(n-3) for n>=5.
G.f.: (x^4 + x^3 + 3*x^2 + 2*x + 1) / (1 - x - x^3). - Colin Barker, Nov 05 2018
EXAMPLE
Some solutions for n=12:
0 1 0 1 1 0 2 2 0 2 0 2 0 0 0 1
0 2 1 2 0 0 1 2 1 1 0 2 0 0 1 2
0 2 0 2 0 1 2 1 0 2 0 2 0 0 0 2
0 2 0 1 0 0 2 2 0 2 1 1 1 1 0 1
0 1 1 2 0 0 2 2 0 2 0 2 0 0 0 2
0 2 0 2 1 1 2 1 1 1 0 2 0 0 0 2
0 2 0 2 0 0 1 2 0 2 0 2 0 0 1 2
0 2 0 2 0 0 2 2 0 2 0 2 0 0 0 2
0 1 1 2 1 1 2 1 0 2 0 1 1 0 0 1
0 2 0 1 0 0 2 2 0 2 0 2 0 0 0 2
0 2 0 2 0 0 2 2 0 1 1 2 0 0 0 2
0 2 0 2 1 0 1 1 0 2 0 1 0 0 1 2
MATHEMATICA
gf=(x^4 + x^3 + 3*x^2 + 2*x + 1) / (1 - x - x^3); Table[SeriesCoefficient[gf, {x, 0, n}], {n, 0, 40}] (* James C. McMahon, Dec 30 2023 *)
CROSSREFS
Column 2 of A245995.
Sequence in context: A288218 A212984 A006048 * A350928 A049827 A186736
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, Aug 09 2014
EXTENSIONS
Edited by Alois P. Heinz, Dec 30 2023
STATUS
approved