login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245995
T(n,k)=Number of length n+2 0..k arrays with no pair in any consecutive three terms totalling exactly k
14
2, 8, 2, 28, 12, 2, 64, 68, 18, 2, 126, 208, 164, 26, 2, 216, 534, 676, 396, 38, 2, 344, 1116, 2262, 2196, 956, 56, 2, 512, 2120, 5766, 9582, 7132, 2308, 82, 2, 730, 3648, 13064, 29790, 40590, 23168, 5572, 120, 2, 1000, 5930, 25992, 80504, 153906, 171942, 75260
OFFSET
1,1
COMMENTS
Table starts
.2...8....28......64......126.......216........344.........512..........730
.2..12....68.....208......534......1116.......2120........3648.........5930
.2..18...164.....676.....2262......5766......13064.......25992........48170
.2..26...396....2196.....9582.....29790......80504......185192.......391290
.2..38...956....7132....40590....153906.....496088.....1319480......3178490
.2..56..2308...23168...171942....795144....3057032.....9401216.....25819210
.2..82..5572...75260...728358...4108062...18838280....66983128....209732170
.2.120.13452..244464..3085374..21223992..116086712...477250848...1703676570
.2.176.32476..794096.13069854.109652160..715358552..3400384160..13839144730
.2.258.78404.2579500.55364790.566509902.4408238024.24227537592.112416834410
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +a(n-3)
k=3: a(n) = 2*a(n-1) +a(n-2)
k=4: a(n) = 2*a(n-1) +a(n-2) +9*a(n-3) +3*a(n-4)
k=5: a(n) = 4*a(n-1) +a(n-2)
k=6: a(n) = 4*a(n-1) +a(n-2) +25*a(n-3) +5*a(n-4)
k=7: a(n) = 6*a(n-1) +a(n-2)
k=8: a(n) = 6*a(n-1) +a(n-2) +49*a(n-3) +7*a(n-4)
k=9: a(n) = 8*a(n-1) +a(n-2)
Empirical for row n:
n=1: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5)
n=2: a(n) = 3*a(n-1) -a(n-2) -5*a(n-3) +5*a(n-4) +a(n-5) -3*a(n-6) +a(n-7)
n=3: a(n) = 3*a(n-1) -8*a(n-3) +6*a(n-4) +6*a(n-5) -8*a(n-6) +3*a(n-8) -a(n-9)
n=4: [order 11]
n=5: [order 13]
n=6: [order 15]
n=7: [order 17]
EXAMPLE
Some solutions for n=5 k=4
..3....0....4....0....0....4....2....1....0....1....1....3....4....1....3....2
..3....0....3....0....2....1....3....2....3....4....4....3....4....1....4....4
..3....3....2....0....0....2....3....0....0....4....4....4....3....0....2....4
..3....2....3....0....1....0....2....1....3....2....4....3....4....0....4....4
..2....4....0....2....0....3....0....0....2....1....3....4....2....1....3....4
..4....4....3....0....1....3....1....2....0....0....4....2....1....0....2....4
..1....1....0....0....2....2....1....3....0....2....3....4....1....1....0....3
CROSSREFS
Sequence in context: A189217 A183037 A063077 * A085192 A320972 A273692
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Aug 09 2014
STATUS
approved