login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245996
Number of length 1+2 0..n arrays with no pair in any consecutive three terms totaling exactly n.
2
2, 8, 28, 64, 126, 216, 344, 512, 730, 1000, 1332, 1728, 2198, 2744, 3376, 4096, 4914, 5832, 6860, 8000, 9262, 10648, 12168, 13824, 15626, 17576, 19684, 21952, 24390, 27000, 29792, 32768, 35938, 39304, 42876, 46656, 50654, 54872, 59320, 64000, 68922
OFFSET
1,1
COMMENTS
From Pontus von Brömssen, Jan 10 2022: (Start)
Proof of the empirical observations in the Formula section:
For k = 1, 2, 3, let N_k be the number of triples (x, y, z) with x, y, and z in 0..n, that satisfy x+y = n (if k=1), x+y = y+z = n (if k=2), or x+y = y+z = z+x = n (if k=3).
By inclusion-exclusion (and symmetry between x, y, and z), a(n) = (n+1)^3 - 3*N_1 + 3*N_2 - N_3. The unique solution to x+y = y+z = z+x = n is x = y = z = n/2, so N_3 = 1 if n is even, otherwise N_3 = 0. We write this as N_3 = [n even]. It is easily seen that N_1 = (n+1)^2 (x and z can be chosen freely and y = n-x) and that N_2 = n+1 (y can be chosen freely and x = z = n-y), so a(n) = (n+1)^3 - 3*(n+1)^2 + 3*(n+1) - [n even] = n^3 + [n odd] = 2*ceiling(n^3/2) = 2*A036486(n).
The recurrence and the generating function follow from this. (End)
FORMULA
Empirical: a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5).
From R. J. Mathar, Aug 10 2014: (Start)
Empirical: a(n) = 2*A036486(n).
G.f.: 2*x*(1+x+4*x^2) / ( (1+x)*(x-1)^4 ). (End)
EXAMPLE
Some solutions for n=10:
6 9 5 8 0 5 8 6 9 8 5 0 4 8 5 2
3 8 3 0 0 7 9 5 0 4 7 5 2 4 7 6
6 9 6 9 5 9 7 3 7 4 1 7 10 0 2 6
CROSSREFS
Row 1 of A245995.
Cf. A036486.
Sequence in context: A299640 A197932 A170871 * A229935 A082107 A135263
KEYWORD
nonn
AUTHOR
R. H. Hardin, Aug 09 2014
STATUS
approved