login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135263
a(n) = 2*A132357(n).
1
2, 8, 28, 82, 244, 728, 2186, 6560, 19684, 59050, 177148, 531440, 1594322, 4782968, 14348908, 43046722, 129140164, 387420488, 1162261466, 3486784400, 10460353204, 31381059610, 94143178828, 282429536480, 847288609442
OFFSET
0,1
COMMENTS
Digital roots yield a hexaperiodic sequence A010888(a(n))= 2, (8, 1, 1, 1, 8, 8,...), the period of length 6 put in parenthesis. Digital roots of A132357 are also hexaperiodic: 1, (4, 5, 5, 5, 4, 4, ....).
FORMULA
a(n) = 3*a(n-1) - a(n-3) + a(n-4).
G.f.: 2*(1+x+2*x^2)/((1+x)*(1-3*x)*(1-x+x^2)). - Colin Barker, Jun 16 2012
MAPLE
seq(coeff(series(2*(1+x+2*x^2)/((1+x)*(1-3*x)*(1-x+x^2)), x, n+1), x, n), n = 0..30); # G. C. Greubel, Nov 21 2019
MATHEMATICA
LinearRecurrence[{3, 0, -1, 3}, {2, 8, 28, 82}, 30] (* G. C. Greubel, Oct 07 2016 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(2*(1+x+2*x^2)/((1+x)*(1-3*x)*(1-x+x^2))) \\ G. C. Greubel, Nov 21 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 2*(1+x+2*x^2)/((1+x)*(1-3*x)*(1-x+x^2)) )); // G. C. Greubel, Nov 21 2019
(Sage)
def A135263_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(2*(1+x+2*x^2)/((1+x)*(1-3*x)*(1-x+x^2))).list()
A135263_list(30) # G. C. Greubel, Nov 21 2019
(GAP) a:=[2, 8, 28, 82];; for n in [5..30] do a[n]:=3*a[n-1]-a[n-3]+ 3*a[n-4]; od; a; # G. C. Greubel, Nov 21 2019
CROSSREFS
Cf. A133448 (hexaperiodic sequence of digital roots).
Sequence in context: A245996 A229935 A082107 * A048497 A118047 A087431
KEYWORD
nonn,less,easy
AUTHOR
Paul Curtz, Dec 02 2007
EXTENSIONS
Edited and extended by R. J. Mathar, Jul 22 2008
STATUS
approved