login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135264
a(n) = 3*A132357(n).
1
3, 12, 42, 123, 366, 1092, 3279, 9840, 29526, 88575, 265722, 797160, 2391483, 7174452, 21523362, 64570083, 193710246, 581130732, 1743392199, 5230176600, 15690529806, 47071589415, 141214768242, 423644304720, 1270932914163
OFFSET
0,1
COMMENTS
Digital roots yield a hexaperiodic sequence A010888(a(n))= 3*A135265(n+1).
FORMULA
a(n) = 3*a(n-1) - a(n-3) + 3*a(n-4).
G.f.: 3*(1 + x + 2*x^2)/(1 - 3*x + x^3 - 3*x^4). - G. C. Greubel, Oct 07 2016 [corrected by Georg Fischer, May 10 2019]
MAPLE
seq(coeff(series(3*(1+x+2*x^2)/(1-3*x+x^3-3*x^4), x, n+1), x, n), n = 0..30); # G. C. Greubel, Nov 21 2019
MATHEMATICA
LinearRecurrence[{3, 0, -1, 3}, {3, 12, 42, 123}, 25] (* G. C. Greubel, Oct 07 2016 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(3*(1+x+2*x^2)/(1-3*x+x^3-3*x^4)) \\ G. C. Greubel, Nov 21 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 3*(1+x+2*x^2)/(1-3*x+x^3-3*x^4) )); // G. C. Greubel, Nov 21 2019
(Sage)
def A135264_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(3*(1+x+2*x^2)/(1-3*x+x^3-3*x^4)).list()
A135264_list(30) # G. C. Greubel, Nov 21 2019
(GAP) a:=[3, 12, 42, 123];; for n in [5..30] do a[n]:=3*a[n-1]-a[n-3]+ 3*a[n-4]; od; a; # G. C. Greubel, Nov 21 2019
CROSSREFS
Sequence in context: A038342 A260153 A328299 * A358690 A084529 A017941
KEYWORD
nonn,less,easy
AUTHOR
Paul Curtz, Dec 02 2007
EXTENSIONS
Edited, corrected and extended by R. J. Mathar, Jul 28 2008
STATUS
approved