login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135261
a(n) = 3*A131090(n) - A131090(n+1).
1
-1, 3, -1, 2, -1, 5, 6, 17, 27, 58, 111, 229, 454, 913, 1819, 3642, 7279, 14565, 29126, 58257, 116507, 233018, 466031, 932069, 1864134, 3728273, 7456539, 14913082, 29826159, 59652325, 119304646, 238609297, 477218587, 954437178, 1908874351, 3817748709, 7635497414
OFFSET
0,2
FORMULA
A131090(n) - a(n) = A131556(n).
O.g.f.: (1-x)^2*(1-3*x)/((2*x-1)*(1+x)*(x^2-x+1)). - R. J. Mathar, Jul 22 2008
a(n) = 2*a(n-1) - a(n-3) + 2*a(n-4). - G. C. Greubel, Oct 07 2016
MAPLE
seq(coeff(series((1-x)^2*(1-3*x)/((2*x-1)*(1+x)*(x^2-x+1)), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Nov 21 2019
MATHEMATICA
LinearRecurrence[{2, 0, -1, 2}, {-1, 3, -1, 2}, 40] (* G. C. Greubel, Oct 07 2016 *)
PROG
(PARI) my(x='x+O('x^40)); Vec((1-x)^2*(1-3*x)/((2*x-1)*(1+x)*(x^2-x+1))) \\ G. C. Greubel, Nov 21 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x)^2*(1-3*x)/((2*x-1)*(1+x)*(x^2-x+1)) )); // G. C. Greubel, Nov 21 2019
(Sage)
def A135261_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1-x)^2*(1-3*x)/((2*x-1)*(1+x)*(x^2-x+1))).list()
A135261_list(40) # G. C. Greubel, Nov 21 2019
(GAP) a:=[-1, 2, -1, 2];; for n in [5..40] do a[n]:=2*a[n-1] -a[n-3] +2*a[n-4]; od; a; # G. C. Greubel, Nov 21 2019
CROSSREFS
Sequence in context: A318323 A366803 A347396 * A339913 A102774 A131918
KEYWORD
sign
AUTHOR
Paul Curtz, Dec 01 2007
EXTENSIONS
Edited and extended by R. J. Mathar, Jul 22 2008
STATUS
approved