login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260153
Number of walks of length n on the square lattice (with steps N, E, S, W) that start at (0,0) and avoid the West quadrant {(i,j): i < -|j|}.
2
1, 3, 12, 41, 164, 590, 2360, 8715, 34860, 130776, 523104, 1983212, 7932848, 30303416, 121213664, 465673065, 1862692260, 7187760140, 28751040560, 111338982436, 445355929744, 1729672999418, 6918691997672, 26936111629934, 107744446519736, 420338301077100
OFFSET
0,2
LINKS
M. Bousquet-Mélou, Plane lattice walks avoiding a quadrant, arXiv:1511.02111 [math.CO], 2015.
FORMULA
G.f.: -1/(4*t) + (1+4*t) * ((sc(K(4*t)/3;4*t)+nc(K(4*t)/3;4*t))/sqrt(3-48*t^2) - K(4*t)/(2*Pi)) / (3*t), where K(4*t) is the complete elliptic integral of modulus 4*t and sc(.;4*t), nc(.;4*t) are Jacobi elliptic functions again with modulus 4*t. - Timothy Budd, Oct 23 2016
a(n) ~ Gamma(1/3) * 2^(2*n+2) / (3*Pi*n^(1/3)). - Vaclav Kotesovec, Oct 06 2019
EXAMPLE
For n=1, the three possible walks are N, E, S.
MAPLE
b:= proc(n, i, j) option remember;
if i < -abs(j) then 0
elif n=0 then 1
else b(n-1, i-1, j)+
b(n-1, i+1, j)+
b(n-1, i, j-1)+
b(n-1, i, j+1)
fi
end:
a:= n-> b(n, 0, 0);
seq(a(n), n=0..30); # Alois P. Heinz, Nov 09 2015
# second Maple program:
a:= proc(n) option remember; `if`(n<4, [1, 3, 12, 41][n+1],
((4*(2*n-5))*(12*n^4-16*n^3-6*n^2+10*n+3) *a(n-1)
+(16*(2*n-5))*(2*n+1)*(6*n^4-24*n^3+28*n^2-8*n-3) *a(n-2)
-(64*(2*n+1))*(12*n^4-80*n^3+186*n^2-178*n+63) *a(n-3)
-(256*(n-1))*(2*n+1)*(2*n-1)*(3*n-7)*(n-3)^2 *a(n-4))/
((2*n-3)*(2*n-5)*(n-1)*(3*n+1)*(n+1)^2))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Nov 09 2015
MATHEMATICA
b[n_, i_, j_] := b[n, i, j] = Which[i < -Abs[j], 0, n == 0, 1, True, b[n-1, i-1, j] + b[n-1, i+1, j] + b[n-1, i, j-1] + b[n-1, i, j+1]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 01 2016, after Alois P. Heinz *)
With[{n = 10}, CoefficientList[Series[
-1/(4*t) + (1+4*t)*((sc+Sqrt[1+sc^2])/Sqrt[3-48*t^2] - k/(2*Pi))/(3*t)
/. sc -> Pi*Sqrt[3]*Normal[Sum[(-1)^p/(1 + q^(-2*p) + q^(2*p)), {p, -n, n}] + O[q]^(2*n)]/(2*k*Sqrt[1-16*t^2])
/. q -> EllipticNomeQ[16*t^2] /. k -> EllipticK[16*t^2],
{t, 0, 4*n}], t]] (* Timothy Budd, Oct 23 2016 *)
CROSSREFS
Cf. A060898 for walks avoiding the negative quadrant rather than the West one, A260154.
Sequence in context: A325482 A017940 A038342 * A328299 A135264 A358690
KEYWORD
nonn
AUTHOR
STATUS
approved