login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260154
Number of square lattice walks of length 2n starting and ending at (0,0) and avoiding the West quadrant {(i,j): i < -|j|}.
2
1, 3, 22, 209, 2256, 26296, 322696, 4109131, 53802868, 719967204, 9804170810, 135438150718, 1893565055948, 26744778067560, 381061505993160, 5470780479977505, 79066952734823832, 1149467155656304276, 16798622641884084940, 246654934301978877376
OFFSET
0,2
LINKS
M. Bousquet-Mélou, Plane lattice walks avoiding a quadrant, arXiv:1511.02111 [math.CO], 2015.
FORMULA
a(2n) = 16^n/9 * ( 3* (1/2)_n^2/ (2)_n^2 + 8 *(1/2)_n* (7/6)_n/ (2)_n/ (4/3)_n - 2 *(1/2)_n*(5/6)_n/ (2)_n/ (5/3)_n), where (a)_n is the ascending factorial (proved).
D-finite with recurrence n*(n-1)*(3*n+2)*(4*n-5)*(3*n+1)*(4*n-7)*(n+1)^2*a(n) -4*n*(n-1)*(4*n-1)*(2*n-1)*(4*n-7)*(54*n^3-45*n^2-49*n-10)*a(n-1) +16*(n-1)*(4*n-5)*(2*n-1)*(2*n-3)*(4*n+1)*(108*n^3-396*n^2+361*n+5)*a(n-2) -64*(6*n-11)*(4*n-1)*(6*n-13)*(2*n-1)*(2*n-3)*(4*n+1)*(-5+2*n)^2*a(n-3)=0. Alois P. Heinz, Nov 10 2015
D-finite with recurrence n*(n-1)*(3*n+2)*(3*n+1)*(n+1)^2*a(n) -4*n*(n-1)*(180*n^4-360*n^3+287*n^2-71*n+2)*a(n-1) +16*(n-1)*(1440*n^5-10080*n^4+29024*n^3-42768*n^2+31867*n-9465)*a(n-2) -64*(2*n-5)*(2880*n^5-30240*n^4+128608*n^3-277008*n^2+301706*n-132501)*a(n-3) +2048*(2*n-5)*(2*n-7)*(360*n^4-4320*n^3+19474*n^2-39156*n+29691)*a(n-4) -16384*(6*n-23)*(6*n-25)*(2*n-5)*(2*n-7)*(2*n-9)^2*a(n-5)=0. - R. J. Mathar, Apr 11 2022
EXAMPLE
When n=1, only the walks NS, EW, SN contribute.
MAPLE
a:= proc(n) option remember; `if`(n<3, [1, 3, 22][n+1],
(4*n*(n-1)*(4*n-1)*(54*n^3-45*n^2-49*n-10)*(2*n-1)*
(4*n-7)*a(n-1) -(16*(n-1))*(4*n-5)*(2*n-1)*(2*n-3)*
(4*n+1)*(108*n^3-396*n^2+361*n+5)*a(n-2) +(64*(6*n-11))*
(4*n-1)*(6*n-13)*(2*n-1)*(2*n-3)*(4*n+1)*(-5+2*n)^2*a(n-3))
/((3*n+2)*(4*n-5)*(3*n+1)*(4*n-7)*n*(n-1)*(n+1)^2))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Nov 10 2015
MATHEMATICA
a[n_] := a[n] = If[n<3, {1, 3, 22}[[n+1]], (4(54n^3 - 45n^2 - 49n - 10)(4n - 7)(n-1)(2n - 1)(4n - 1) n a[n-1] - (16(n-1)(4n - 5)(2n - 1)(2n - 3)(4n + 1)(108n^3 - 396n^2 + 361n + 5) a[n-2]) + (6n - 13)(64(6n - 11))(2n - 3) (2n - 1)(4n - 1)(4n + 1)(2n - 5)^2 a[n-3])/((3n + 2)(4n - 5)(3n + 1)(4n - 7) n(n-1)(n+1)^2)]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Dec 04 2016 after Alois P. Heinz *)
CROSSREFS
Cf. A260153.
Sequence in context: A006783 A330668 A001409 * A340474 A079489 A190526
KEYWORD
nonn,easy,walk
AUTHOR
STATUS
approved