login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245999
Number of length 4+2 0..n arrays with no pair in any consecutive three terms totalling exactly n.
1
2, 26, 396, 2196, 9582, 29790, 80504, 185192, 391290, 753570, 1371972, 2352636, 3877286, 6128486, 9405552, 13997520, 20363634, 28934442, 40377980, 55306340, 74651742, 99252846, 130367976, 169112376, 217138922, 275894450, 347501364
OFFSET
1,1
COMMENTS
Row 4 of A245995.
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) +a(n-2) -11*a(n-3) +6*a(n-4) +14*a(n-5) -14*a(n-6) -6*a(n-7) +11*a(n-8) -a(n-9) -3*a(n-10) +a(n-11).
Empirical: G.f.: -2*x*(1 +10*x +158*x^2 +502*x^3 +1436*x^4 +1510*x^5 +1498*x^6 +474*x^7 +171*x^8) / ( (1+x)^4*(x-1)^7 ). - R. J. Mathar, Aug 10 2014
EXAMPLE
Some solutions for n=8
..1....2....1....3....2....0....0....1....1....0....4....0....2....5....5....3
..4....7....3....2....0....2....2....5....1....7....1....2....2....2....2....7
..5....5....4....1....7....1....5....5....5....6....6....3....7....1....5....7
..6....5....1....4....2....8....4....7....8....5....3....4....7....8....7....5
..8....0....5....0....2....1....8....7....4....4....6....1....4....5....0....2
..4....1....6....1....7....8....7....4....6....7....1....1....7....5....6....2
CROSSREFS
Cf. A245995.
Sequence in context: A057351 A350436 A359924 * A355725 A285026 A137100
KEYWORD
nonn
AUTHOR
R. H. Hardin, Aug 09 2014
STATUS
approved