The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A359924 a(n) = coefficient of x^n in A(x) such that 2/x = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)). 10
 1, 2, 26, 372, 6006, 105338, 1952102, 37598422, 745116966, 15094772444, 311183832004, 6507065710068, 137683172641240, 2942394474649322, 63418690179207242, 1376986195691108990, 30090726682472126472, 661292884776232386766, 14606177871231796042658, 324062328994910188622258 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Paul D. Hanna, Table of n, a(n) for n = 1..200 Weisstein, Eric W., Quintuple Product Identity from MathWorld. FORMULA G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following. (1) 2/x = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)). (2) 2/x = Product_{n>=1} (1 - x^n) * (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)) * (1 - x^(2*n-1)*A(x)^2) * (1 - x^(2*n-1)/A(x)^2), by the Watson quintuple product identity. a(n) = Sum_{k=0..n-1} A361050(n,k) * 2^k for n >= 1. - Paul D. Hanna, Mar 19 2023 a(n) ~ c * d^n / n^(3/2), where d = 24.0303544191480291910560326469... and c = 0.0066619562786442340995706184... - Vaclav Kotesovec, Mar 14 2023 EXAMPLE G.f.: A(x) = x + 2*x^2 + 26*x^3 + 372*x^4 + 6006*x^5 + 105338*x^6 + 1952102*x^7 + 37598422*x^8 + 745116966*x^9 + 15094772444*x^10 + ... where A = A(x) satisfies the doubly infinite sum 2/x = ... + x^12*(1/A^9 - A^8) + x^5*(1/A^6 - A^5) + x*(1/A^3 - A^2) + (1 - 1/A) + x^2*(A^3 - 1/A^4) + x^7*(A^6 - 1/A^7) + x^15*(A^9 - 1/A^10) + ... + x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)) + ... also, by the Watson quintuple product identity, 2/x = (1-x)*(1-x*A)*(1-1/A)*(1-x*A^2)*(1-x/A^2) * (1-x^2)*(1-x^2*A)*(1-x/A)*(1-x^3*A^2)*(1-x^3/A^2) * (1-x^3)*(1-x^3*A)*(1-x^2/A)*(1-x^5*A^2)*(1-x^5/A^2) * (1-x^4)*(1-x^4*A)*(1-x^3/A)*(1-x^7*A^2)*(1-x^7/A^2) * ... PROG (PARI) /* Using the doubly infinite series */ {a(n) = my(A=[0, 1]); for(i=1, n, A = concat(A, 0); A[#A] = polcoeff(2/x - sum(m=-#A, #A, (Ser(A)^(3*m) - 1/Ser(A)^(3*m+1)) * x^(m*(3*m+1)/2) ), #A-4) ); A[n+1]} for(n=1, 30, print1(a(n), ", ")) (PARI) /* Using the quintuple product */ {a(n) = my(A=[0, 1]); for(i=1, n, A = concat(A, 0); A[#A] = polcoeff(2/x - prod(m=1, #A, (1 - x^m) * (1 - x^m*Ser(A)) * (1 - x^(m-1)/Ser(A)) * (1 - x^(2*m-1)*Ser(A)^2) * (1 - x^(2*m-1)/Ser(A)^2) ), #A-4) ); A[n+1]} for(n=1, 30, print1(a(n), ", ")) CROSSREFS Cf. A359920, A359921, A361050, A361052, A361538. Sequence in context: A126673 A057351 A350436 * A245999 A355725 A285026 Adjacent sequences: A359921 A359922 A359923 * A359925 A359926 A359927 KEYWORD nonn AUTHOR Paul D. Hanna, Jan 22 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 5 11:42 EDT 2023. Contains 363136 sequences. (Running on oeis4.)