login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361052
Expansion of g.f. A(x) satisfying 4/x = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)).
5
1, 4, 84, 2120, 61404, 1934548, 64379980, 2226478604, 79225597516, 2881791020120, 106672402111192, 4005192227754984, 152168779157569376, 5839221480075313396, 225986788425426186532, 8810672964167893735292, 345722424894740010814784, 13642862904817471637398044
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Quintuple Product Identity.
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following.
(1) 4/x = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)).
(2) 4/x = Product_{n>=1} (1 - x^n) * (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)) * (1 - x^(2*n-1)*A(x)^2) * (1 - x^(2*n-1)/A(x)^2), by the Watson quintuple product identity.
(3) a(n) = Sum_{k=0..n-1} A361050(n,k) * 4^k, for n >= 1.
a(n) ~ c * d^n / n^(3/2), where d = 43.15078920061551630152405195461463024566432382819246... and c = 0.0036458304883879627950854318861022051996596920296... - Vaclav Kotesovec, Mar 19 2023
EXAMPLE
G.f.: A(x) = x + 4*x^2 + 84*x^3 + 2120*x^4 + 61404*x^5 + 1934548*x^6 + 64379980*x^7 + 2226478604*x^8 + 79225597516*x^9 + ...
where A = A(x) satisfies the doubly infinite sum
4/x = ... + x^12*(1/A^9 - A^8) + x^5*(1/A^6 - A^5) + x*(1/A^3 - A^2) + (1 - 1/A) + x^2*(A^3 - 1/A^4) + x^7*(A^6 - 1/A^7) + x^15*(A^9 - 1/A^10) + ... + x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)) + ...
also, by the Watson quintuple product identity,
4/x = (1-x)*(1-x*A)*(1-1/A)*(1-x*A^2)*(1-x/A^2) * (1-x^2)*(1-x^2*A)*(1-x/A)*(1-x^3*A^2)*(1-x^3/A^2) * (1-x^3)*(1-x^3*A)*(1-x^2/A)*(1-x^5*A^2)*(1-x^5/A^2) * (1-x^4)*(1-x^4*A)*(1-x^3/A)*(1-x^7*A^2)*(1-x^7/A^2) * ...
PROG
(PARI) /* Using the doubly infinite series */
{a(n) = my(A=[0, 1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff(4/x - sum(m=-#A, #A, (Ser(A)^(3*m) - 1/Ser(A)^(3*m+1)) * x^(m*(3*m+1)/2) ), #A-4) ); A[n+1]}
for(n=1, 30, print1(a(n), ", "))
(PARI) /* Using the quintuple product */
{a(n) = my(A=[0, 1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff(4/x - prod(m=1, #A, (1 - x^m) * (1 - x^m*Ser(A)) * (1 - x^(m-1)/Ser(A)) * (1 - x^(2*m-1)*Ser(A)^2) * (1 - x^(2*m-1)/Ser(A)^2) ), #A-4) ); A[n+1]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 18 2023
STATUS
approved