OFFSET
0,3
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..300
FORMULA
Given g.f. A(x) = Sum_{n>=0} a(n)*x^n, let G(x) be the g.f. of A361048, then the following formulas hold.
(1) A(x) = (1/x)*Series_Reversion( x/(1 + x*A(x)^2 + x^2*A(x)*A'(x)) ).
(2) A(x) = G(x*A(x)).
(4) A(x) = (1/x)*Series_Reversion(x/G(x)).
(3) G(x) = A(x/G(x)).
(5) G(x) = 1 + d/dx (x^2 * A(x)^2)/2.
a(n) ~ c * n! * n^(3*LambertW(1) - 2 + 3/(1 + LambertW(1))) / LambertW(1)^n, where c = 0.13835030685615842626... - Vaclav Kotesovec, Mar 13 2023
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 28*x^3 + 269*x^4 + 3201*x^5 + 44737*x^6 + 711691*x^7 + 12630023*x^8 + 246594988*x^9 + ...
such that A(x) = G(x*A(x)) where G(x) is given by
G(x) = 1 + d/dx (x^2 * A(x)^2)/2, which begins
G(x) = 1 + x + 3*x^2 + 18*x^3 + 160*x^4 + 1830*x^5 + 25074*x^6 + 395248*x^7 + 6990876*x^8 + ... + A361048(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=1); for(i=1, n,
A = (1/x)*serreverse( x/(1 + x*A^2 + x^2*A*A') +x^2*O(x^n) )); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 13 2023
STATUS
approved