login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = coefficient of x^n in A(x) such that 2/x = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)).
10

%I #21 Jan 05 2024 17:17:39

%S 1,2,26,372,6006,105338,1952102,37598422,745116966,15094772444,

%T 311183832004,6507065710068,137683172641240,2942394474649322,

%U 63418690179207242,1376986195691108990,30090726682472126472,661292884776232386766,14606177871231796042658,324062328994910188622258

%N a(n) = coefficient of x^n in A(x) such that 2/x = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)).

%H Paul D. Hanna, <a href="/A359924/b359924.txt">Table of n, a(n) for n = 1..200</a>

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/QuintupleProductIdentity.html">Quintuple Product Identity</a>.

%F G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following.

%F (1) 2/x = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)).

%F (2) 2/x = Product_{n>=1} (1 - x^n) * (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)) * (1 - x^(2*n-1)*A(x)^2) * (1 - x^(2*n-1)/A(x)^2), by the Watson quintuple product identity.

%F a(n) = Sum_{k=0..n-1} A361050(n,k) * 2^k for n >= 1. - _Paul D. Hanna_, Mar 19 2023

%F a(n) ~ c * d^n / n^(3/2), where d = 24.0303544191480291910560326469... and c = 0.0066619562786442340995706184... - _Vaclav Kotesovec_, Mar 14 2023

%e G.f.: A(x) = x + 2*x^2 + 26*x^3 + 372*x^4 + 6006*x^5 + 105338*x^6 + 1952102*x^7 + 37598422*x^8 + 745116966*x^9 + 15094772444*x^10 + ...

%e where A = A(x) satisfies the doubly infinite sum

%e 2/x = ... + x^12*(1/A^9 - A^8) + x^5*(1/A^6 - A^5) + x*(1/A^3 - A^2) + (1 - 1/A) + x^2*(A^3 - 1/A^4) + x^7*(A^6 - 1/A^7) + x^15*(A^9 - 1/A^10) + ... + x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)) + ...

%e also, by the Watson quintuple product identity,

%e 2/x = (1-x)*(1-x*A)*(1-1/A)*(1-x*A^2)*(1-x/A^2) * (1-x^2)*(1-x^2*A)*(1-x/A)*(1-x^3*A^2)*(1-x^3/A^2) * (1-x^3)*(1-x^3*A)*(1-x^2/A)*(1-x^5*A^2)*(1-x^5/A^2) * (1-x^4)*(1-x^4*A)*(1-x^3/A)*(1-x^7*A^2)*(1-x^7/A^2) * ...

%o (PARI) /* Using the doubly infinite series */

%o {a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);

%o A[#A] = polcoeff(2/x - sum(m=-#A,#A, (Ser(A)^(3*m) - 1/Ser(A)^(3*m+1)) * x^(m*(3*m+1)/2) ),#A-4) ); A[n+1]}

%o for(n=1,30, print1(a(n),", "))

%o (PARI) /* Using the quintuple product */

%o {a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);

%o A[#A] = polcoeff(2/x - prod(m=1,#A, (1 - x^m) * (1 - x^m*Ser(A)) * (1 - x^(m-1)/Ser(A)) * (1 - x^(2*m-1)*Ser(A)^2) * (1 - x^(2*m-1)/Ser(A)^2) ),#A-4) ); A[n+1]}

%o for(n=1,30, print1(a(n),", "))

%Y Cf. A359920, A359921, A361050, A361052, A361538.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Jan 22 2023