login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of length n+2 0..k arrays with no pair in any consecutive three terms totalling exactly k
14

%I #4 Aug 09 2014 07:46:26

%S 2,8,2,28,12,2,64,68,18,2,126,208,164,26,2,216,534,676,396,38,2,344,

%T 1116,2262,2196,956,56,2,512,2120,5766,9582,7132,2308,82,2,730,3648,

%U 13064,29790,40590,23168,5572,120,2,1000,5930,25992,80504,153906,171942,75260

%N T(n,k)=Number of length n+2 0..k arrays with no pair in any consecutive three terms totalling exactly k

%C Table starts

%C .2...8....28......64......126.......216........344.........512..........730

%C .2..12....68.....208......534......1116.......2120........3648.........5930

%C .2..18...164.....676.....2262......5766......13064.......25992........48170

%C .2..26...396....2196.....9582.....29790......80504......185192.......391290

%C .2..38...956....7132....40590....153906.....496088.....1319480......3178490

%C .2..56..2308...23168...171942....795144....3057032.....9401216.....25819210

%C .2..82..5572...75260...728358...4108062...18838280....66983128....209732170

%C .2.120.13452..244464..3085374..21223992..116086712...477250848...1703676570

%C .2.176.32476..794096.13069854.109652160..715358552..3400384160..13839144730

%C .2.258.78404.2579500.55364790.566509902.4408238024.24227537592.112416834410

%H R. H. Hardin, <a href="/A245995/b245995.txt">Table of n, a(n) for n = 1..9999</a>

%F Empirical for column k:

%F k=1: a(n) = a(n-1)

%F k=2: a(n) = a(n-1) +a(n-3)

%F k=3: a(n) = 2*a(n-1) +a(n-2)

%F k=4: a(n) = 2*a(n-1) +a(n-2) +9*a(n-3) +3*a(n-4)

%F k=5: a(n) = 4*a(n-1) +a(n-2)

%F k=6: a(n) = 4*a(n-1) +a(n-2) +25*a(n-3) +5*a(n-4)

%F k=7: a(n) = 6*a(n-1) +a(n-2)

%F k=8: a(n) = 6*a(n-1) +a(n-2) +49*a(n-3) +7*a(n-4)

%F k=9: a(n) = 8*a(n-1) +a(n-2)

%F Empirical for row n:

%F n=1: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5)

%F n=2: a(n) = 3*a(n-1) -a(n-2) -5*a(n-3) +5*a(n-4) +a(n-5) -3*a(n-6) +a(n-7)

%F n=3: a(n) = 3*a(n-1) -8*a(n-3) +6*a(n-4) +6*a(n-5) -8*a(n-6) +3*a(n-8) -a(n-9)

%F n=4: [order 11]

%F n=5: [order 13]

%F n=6: [order 15]

%F n=7: [order 17]

%e Some solutions for n=5 k=4

%e ..3....0....4....0....0....4....2....1....0....1....1....3....4....1....3....2

%e ..3....0....3....0....2....1....3....2....3....4....4....3....4....1....4....4

%e ..3....3....2....0....0....2....3....0....0....4....4....4....3....0....2....4

%e ..3....2....3....0....1....0....2....1....3....2....4....3....4....0....4....4

%e ..2....4....0....2....0....3....0....0....2....1....3....4....2....1....3....4

%e ..4....4....3....0....1....3....1....2....0....0....4....2....1....0....2....4

%e ..1....1....0....0....2....2....1....3....0....2....3....4....1....1....0....3

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Aug 09 2014