OFFSET
0,3
COMMENTS
For a guide to related sequences, see A212959.
LINKS
Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-2,1).
FORMULA
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n>4.
G.f.: f(x)/g(x), where f(x) = 1 - x + 2*x^2 and g(x) = (1+x+x^2)*(1-x)^3.
a(n) = 1 + floor(2*n/3) + floor(n^2/3). - Wesley Ivan Hurt, Jul 25 2016
MAPLE
A212984:=n->1 + floor(2*n/3) + floor(n^2/3): seq(A212984(n), n=0..100); # Wesley Ivan Hurt, Jul 25 2016
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[3 w == x + y, s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 70]] (* A212984 *)
PROG
(Magma) [1 + Floor(2*n/3) + Floor(n^2/3) : n in [0..80]]; // Wesley Ivan Hurt, Jul 25 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 04 2012
STATUS
approved