login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of pairs of endofunctions f, g on [n] satisfying g^9(f(i)) = f(i) for all i in [n].
2

%I #4 Aug 09 2014 12:34:54

%S 1,1,6,141,6184,387545,33404256,3891981205,592320594048,

%T 128805405787953,43012267760166400,19329826195760619341,

%U 10086545470056599549952,5787171311384573282516617,3623228151360430287454531584,2480483584581055916081566933125

%N Number of pairs of endofunctions f, g on [n] satisfying g^9(f(i)) = f(i) for all i in [n].

%H Alois P. Heinz, <a href="/A245986/b245986.txt">Table of n, a(n) for n = 0..100</a>

%p with(combinat): M:=multinomial:

%p b:= proc(n, k) local l, g; l, g:= [1, 3, 9],

%p proc(k, m, i, t) option remember; local d, j; d:= l[i];

%p `if`(i=1, n^m, add(M(k, k-(d-t)*j, (d-t)$j)/j!*

%p (d-1)!^j *M(m, m-t*j, t$j) *g(k-(d-t)*j, m-t*j,

%p `if`(d-t=1, [i-1, 0], [i, t+1])[]), j=0..min(k/(d-t),

%p `if`(t=0, [][], m/t))))

%p end; g(k, n-k, nops(l), 0)

%p end:

%p a:= n-> add(b(n, j)*stirling2(n, j)*binomial(n, j)*j!, j=0..n):

%p seq(a(n), n=0..20);

%Y Column k=9 of A245980.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Aug 08 2014