OFFSET
3,3
COMMENTS
LINKS
Heinrich Ludwig, Table of n, a(n) for n = 3..100
Heinrich Ludwig, Illustration of tiling a 5X5X5 area
Index entries for linear recurrences with constant coefficients, signature (2,3,-5,-8,3,19,4,-24,-15,15,24,-4,-19,-3,8,5,-3,-2,1).
FORMULA
a(n) = (n^8 -12*n^7 +6*n^6 +432*n^5 -1249*n^4 -5028*n^3 +21820*n^2 +12384*n -94000)/144 + IF(MOD(n, 2) = 1, -8*n^3 +72*n^2 -208*n +189)/24 + IF(MOD(n, 3) = 0, -n^2 +3*n +7)/9 for n >= 5.
G.f.: x^4*(1 + 4*x + 127*x^2 + 983*x^3 + 4353*x^4 + 11916*x^5 + 22875*x^6 + 31058*x^7 + 30066*x^8 + 18947*x^9 + 5576*x^10 - 2441*x^11 - 3003*x^12 - 698*x^13 + 707*x^14 + 536*x^15 + 71*x^16 - 73*x^17 - 37*x^18 - 8*x^19) / ((1 - x)^9*(1 + x)^4*(1 + x + x^2)^3). - Colin Barker, May 12 2017
EXAMPLE
There are 6 non-equivalent ways of tiling a triangular area of side 5 with 4 tiles of side 2 and an appropriate number (= 9) of tiles of side 1. See illustration in links section.
PROG
(PARI) concat(0, Vec(x^4*(1 + 4*x + 127*x^2 + 983*x^3 + 4353*x^4 + 11916*x^5 + 22875*x^6 + 31058*x^7 + 30066*x^8 + 18947*x^9 + 5576*x^10 - 2441*x^11 - 3003*x^12 - 698*x^13 + 707*x^14 + 536*x^15 + 71*x^16 - 73*x^17 - 37*x^18 - 8*x^19) / ((1 - x)^9*(1 + x)^4*(1 + x + x^2)^3) + O(x^60))) \\ Colin Barker, May 12 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Heinrich Ludwig, May 12 2017
STATUS
approved