login
A286446
Number of non-equivalent ways to tile an n X n X n triangular area with four 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-16) of 1 X 1 X 1 tiles.
5
0, 1, 6, 142, 1280, 7301, 29603, 96485, 266636, 652908, 1452054, 2992513, 5789499, 10629381, 18660890, 31530854, 51525116, 81772345, 126449707, 191075297, 282794784, 410784700, 586640186, 824912741, 1143620051, 1564946921, 2115898646, 2829194838, 3744093216, 4907506597
OFFSET
3,3
COMMENTS
Rotations and reflections of tilings are not counted. If they are to be counted, see A286439. Tiles of the same size are indistinguishable.
For an analogous problem concerning square tiles, see A279113.
LINKS
Index entries for linear recurrences with constant coefficients, signature (2,3,-5,-8,3,19,4,-24,-15,15,24,-4,-19,-3,8,5,-3,-2,1).
FORMULA
a(n) = (n^8 -12*n^7 +6*n^6 +432*n^5 -1249*n^4 -5028*n^3 +21820*n^2 +12384*n -94000)/144 + IF(MOD(n, 2) = 1, -8*n^3 +72*n^2 -208*n +189)/24 + IF(MOD(n, 3) = 0, -n^2 +3*n +7)/9 for n >= 5.
G.f.: x^4*(1 + 4*x + 127*x^2 + 983*x^3 + 4353*x^4 + 11916*x^5 + 22875*x^6 + 31058*x^7 + 30066*x^8 + 18947*x^9 + 5576*x^10 - 2441*x^11 - 3003*x^12 - 698*x^13 + 707*x^14 + 536*x^15 + 71*x^16 - 73*x^17 - 37*x^18 - 8*x^19) / ((1 - x)^9*(1 + x)^4*(1 + x + x^2)^3). - Colin Barker, May 12 2017
EXAMPLE
There are 6 non-equivalent ways of tiling a triangular area of side 5 with 4 tiles of side 2 and an appropriate number (= 9) of tiles of side 1. See illustration in links section.
PROG
(PARI) concat(0, Vec(x^4*(1 + 4*x + 127*x^2 + 983*x^3 + 4353*x^4 + 11916*x^5 + 22875*x^6 + 31058*x^7 + 30066*x^8 + 18947*x^9 + 5576*x^10 - 2441*x^11 - 3003*x^12 - 698*x^13 + 707*x^14 + 536*x^15 + 71*x^16 - 73*x^17 - 37*x^18 - 8*x^19) / ((1 - x)^9*(1 + x)^4*(1 + x + x^2)^3) + O(x^60))) \\ Colin Barker, May 12 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Heinrich Ludwig, May 12 2017
STATUS
approved