login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126970
Triangle T(n,k), 0 <= k <= n, read by rows given by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = T(n-1,1), T(n,k) = T(n-1,k-1) + 3*T(n-1,k) + T(n-1,k+1) for k >= 1.
26
1, 0, 1, 1, 3, 1, 3, 11, 6, 1, 11, 42, 30, 9, 1, 42, 167, 141, 58, 12, 1, 167, 684, 648, 327, 95, 15, 1, 684, 2867, 2955, 1724, 627, 141, 18, 1, 2867, 12240, 13456, 8754, 3746, 1068, 196, 21, 1, 12240, 53043, 61362, 43464, 21060, 7146, 1677, 260, 24, 1
OFFSET
0,5
COMMENTS
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
FORMULA
Sum_{k=0..n} T(n,k) = A126952(n).
Sum_{k>=0} T(m,k)*T(n,k) = T(m+n,0) = A117641(m+n).
Sum_{k=0..n} T(n,k)*(4*k+1) = 5^n. - Philippe Deléham, Mar 22 2007
EXAMPLE
Triangle begins:
1;
0, 1;
1, 3, 1;
3, 11, 6, 1;
11, 42, 30, 9, 1;
42, 167, 141, 58, 12, 1;
167, 684, 648, 327, 95, 15, 1; ...
From Philippe Deléham, Nov 07 2011: (Start)
Production matrix begins:
0, 1
1, 3, 1
0, 1, 3, 1
0, 0, 1, 3, 1
0, 0, 0, 1, 3, 1
0, 0, 0, 0, 1, 3, 1
0, 0, 0, 0, 0, 1, 3, 1
0, 0, 0, 0, 0, 0, 1, 3, 1
0, 0, 0, 0, 0, 0, 0, 1, 3, 1 (End)
MATHEMATICA
T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]]; Table[T[n, k, 0, 3], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 21 2017 *)
CROSSREFS
Sequence in context: A375720 A025238 A289066 * A204134 A233168 A001351
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Mar 19 2007
STATUS
approved