%I #19 Jan 20 2020 21:42:04
%S 1,0,1,1,3,1,3,11,6,1,11,42,30,9,1,42,167,141,58,12,1,167,684,648,327,
%T 95,15,1,684,2867,2955,1724,627,141,18,1,2867,12240,13456,8754,3746,
%U 1068,196,21,1,12240,53043,61362,43464,21060,7146,1677,260,24,1
%N Triangle T(n,k), 0 <= k <= n, read by rows given by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = T(n-1,1), T(n,k) = T(n-1,k-1) + 3*T(n-1,k) + T(n-1,k+1) for k >= 1.
%C This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - _Philippe Deléham_, Sep 25 2007
%H G. C. Greubel, <a href="/A126970/b126970.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%F Sum_{k=0..n} T(n,k) = A126952(n).
%F Sum_{k>=0} T(m,k)*T(n,k) = T(m+n,0) = A117641(m+n).
%F Sum_{k=0..n} T(n,k)*(4*k+1) = 5^n. - _Philippe Deléham_, Mar 22 2007
%e Triangle begins:
%e 1;
%e 0, 1;
%e 1, 3, 1;
%e 3, 11, 6, 1;
%e 11, 42, 30, 9, 1;
%e 42, 167, 141, 58, 12, 1;
%e 167, 684, 648, 327, 95, 15, 1; ...
%e From _Philippe Deléham_, Nov 07 2011: (Start)
%e Production matrix begins:
%e 0, 1
%e 1, 3, 1
%e 0, 1, 3, 1
%e 0, 0, 1, 3, 1
%e 0, 0, 0, 1, 3, 1
%e 0, 0, 0, 0, 1, 3, 1
%e 0, 0, 0, 0, 0, 1, 3, 1
%e 0, 0, 0, 0, 0, 0, 1, 3, 1
%e 0, 0, 0, 0, 0, 0, 0, 1, 3, 1 (End)
%t T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]]; Table[T[n, k, 0, 3], {n, 0, 49}, {k, 0, n}] // Flatten (* _G. C. Greubel_, Apr 21 2017 *)
%K nonn,tabl
%O 0,5
%A _Philippe Deléham_, Mar 19 2007