login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276366
G.f. A(x) satisfies: A(x - A(x)^3) = x + A(x)^2.
1
1, 1, 3, 12, 57, 300, 1697, 10126, 62991, 405247, 2680901, 18160444, 125562250, 883868590, 6321838520, 45869309028, 337167193262, 2508018933431, 18861358215299, 143293615189089, 1098997404472941, 8504070741463729, 66358269984208701, 521923129718567918, 4136089275165532156, 33013640650845937124
OFFSET
1,3
LINKS
FORMULA
G.f. A(x) satisfies: A'(x - A(x)^3) = (1 + 2*A'(x)*A(x)) / (1 - 3*A'(x)*A(x)^2).
EXAMPLE
G.f.: A(x) = x + x^2 + 3*x^3 + 12*x^4 + 57*x^5 + 300*x^6 + 1697*x^7 + 10126*x^8 + 62991*x^9 + 405247*x^10 + 2680901*x^11 + 18160444*x^12 +...
such that A(x - A(x)^3) = x + A(x)^2.
RELATED SERIES.
A(x - A(x)^3) = x + x^2 + 2*x^3 + 7*x^4 + 30*x^5 + 147*x^6 + 786*x^7 + 4480*x^8 + 26814*x^9 + 166865*x^10 + 1072160*x^11 + 7076724*x^12 +...
which equals x + A(x)^2.
PROG
(PARI) {a(n) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = -polcoeff(subst(F, x, x-F^3) - F^2, #A) ); A[n]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 01 2016
STATUS
approved