login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243521
The number of states in a Tower of Hanoi puzzle with three pegs and n discs, where a larger disc can be placed directly on top of a smaller one at most once per peg.
1
1, 3, 12, 57, 300, 1701, 10206, 63825, 411096, 2702349, 17992506, 120543561, 808224372, 5400815829, 35868103734, 236354531841, 1544182760496, 10001335837725, 64233753928722, 409298268016761, 2589206145139596
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (40,-715,7522,-51583,240964,-776637,1705554,-2442744,2060640,-777600).
FORMULA
a(n) = Sum_{i+j+k=n, i >= 0, j >= 0, k>= 0} {n choose i, j, k}(2^i-i)(2^j-j)(2^k-k).
a(n) = 6^n-3*n*5^{n-1}+3*n*(n-1)*4^{n-2}-n*(n-1)*(n-2)3^{n-3}.
From Colin Barker, Jul 18 2019: (Start)
G.f.: (1 - 37*x + 607*x^2 - 5800*x^3 + 35617*x^4 - 146023*x^5 + 400653*x^6 - 711780*x^7 + 746142*x^8 - 353412*x^9) / ((1 - 3*x)^4*(1 - 4*x)^3*(1 - 5*x)^2*(1 - 6*x)).
a(n) = 40*a(n-1) - 715*a(n-2) + 7522*a(n-3) - 51583*a(n-4) + 240964*a(n-5) - 776637*a(n-6) + 1705554*a(n-7) - 2442744*a(n-8) + 2060640*a(n-9) - 777600*a(n-10) for n>9.
(End)
PROG
(Sage)
for n in range(11):
t=0
for k in range(n+1):
for j in range(n-k+1):
t=t+((Combinations(n, k).cardinality())*(Combinations(n-k, j).cardinality())*((2^k)-k)*((2^j)-j)*((2^(n-k-j))-n+k+j));
print(t)
(PARI) Vec((1 - 37*x + 607*x^2 - 5800*x^3 + 35617*x^4 - 146023*x^5 + 400653*x^6 - 711780*x^7 + 746142*x^8 - 353412*x^9) / ((1 - 3*x)^4*(1 - 4*x)^3*(1 - 5*x)^2*(1 - 6*x)) + O(x^30)) \\ Colin Barker, Jul 18 2019
CROSSREFS
Terms in product are A000325.
Sequence in context: A047891 A166991 A276366 * A369484 A151498 A103370
KEYWORD
nonn,easy
AUTHOR
Robert A. Beeler, Jun 05 2014
STATUS
approved