Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Jan 22 2021 20:30:41
%S 1,3,12,57,300,1701,10206,63825,411096,2702349,17992506,120543561,
%T 808224372,5400815829,35868103734,236354531841,1544182760496,
%U 10001335837725,64233753928722,409298268016761,2589206145139596
%N The number of states in a Tower of Hanoi puzzle with three pegs and n discs, where a larger disc can be placed directly on top of a smaller one at most once per peg.
%H Colin Barker, <a href="/A243521/b243521.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (40,-715,7522,-51583,240964,-776637,1705554,-2442744,2060640,-777600).
%H <a href="/index/To#Hanoi">Index entries for sequences related to Towers of Hanoi</a>
%F a(n) = Sum_{i+j+k=n, i >= 0, j >= 0, k>= 0} {n choose i, j, k}(2^i-i)(2^j-j)(2^k-k).
%F a(n) = 6^n-3*n*5^{n-1}+3*n*(n-1)*4^{n-2}-n*(n-1)*(n-2)3^{n-3}.
%F From _Colin Barker_, Jul 18 2019: (Start)
%F G.f.: (1 - 37*x + 607*x^2 - 5800*x^3 + 35617*x^4 - 146023*x^5 + 400653*x^6 - 711780*x^7 + 746142*x^8 - 353412*x^9) / ((1 - 3*x)^4*(1 - 4*x)^3*(1 - 5*x)^2*(1 - 6*x)).
%F a(n) = 40*a(n-1) - 715*a(n-2) + 7522*a(n-3) - 51583*a(n-4) + 240964*a(n-5) - 776637*a(n-6) + 1705554*a(n-7) - 2442744*a(n-8) + 2060640*a(n-9) - 777600*a(n-10) for n>9.
%F (End)
%o (Sage)
%o for n in range(11):
%o t=0
%o for k in range(n+1):
%o for j in range(n-k+1):
%o t=t+((Combinations(n,k).cardinality())*(Combinations(n-k,j).cardinality())*((2^k)-k)*((2^j)-j)*((2^(n-k-j))-n+k+j));
%o print(t)
%o (PARI) Vec((1 - 37*x + 607*x^2 - 5800*x^3 + 35617*x^4 - 146023*x^5 + 400653*x^6 - 711780*x^7 + 746142*x^8 - 353412*x^9) / ((1 - 3*x)^4*(1 - 4*x)^3*(1 - 5*x)^2*(1 - 6*x)) + O(x^30)) \\ _Colin Barker_, Jul 18 2019
%Y Terms in product are A000325.
%K nonn,easy
%O 0,2
%A _Robert A. Beeler_, Jun 05 2014