Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Nov 06 2019 12:40:43
%S 1,2,18,252,4410,88734,1969668,47104056,1195658550,31891944750,
%T 887565934494,25639389304560,765765781572600,23574635888791804,
%U 746297727831434376,24247096863466015152,807243935471150901066,27503153109167182217082,957899411829034037383374,34073454839478198669105444,1236879534288183156526996062,45788365378826408823663436974,1727576456033196960394178300184
%N G.f. A(x) satisfies: A(x - A(x)^3) = x + A(x)^3, where A(x) = Sum_{n>=1} a(n)*x^(2*n-1).
%H Paul D. Hanna, <a href="/A276364/b276364.txt">Table of n, a(n) for n = 1..300</a>
%F G.f. A(x) also satisfies:
%F (1) A(x) = x + 2 * A( x/2 + A(x)/2 )^3.
%F (2) A(x) = -x + 2 * Series_Reversion(x - A(x)^3).
%F (3) R(x) = -x + 2 * Series_Reversion(x + A(x)^3), where R(A(x)) = x.
%F (4) R( ( x/2 - R(x)/2 )^(1/3) ) = x/2 + R(x)/2, where R(A(x)) = x.
%e G.f.: A(x) = x + 2*x^3 + 18*x^5 + 252*x^7 + 4410*x^9 + 88734*x^11 + 1969668*x^13 + 47104056*x^15 + 1195658550*x^17 + 31891944750*x^19 + 887565934494*x^21 + 25639389304560*x^23 + 765765781572600*x^25 +...
%e such that A(x - A(x)^3) = x + A(x)^3.
%e RELATED SERIES.
%e Note that Series_Reversion(x - A(x)^3) = x/2 + A(x)/2, which begins:
%e Series_Reversion(x - A(x)^2) = x + x^3 + 9*x^5 + 126*x^7 + 2205*x^9 + 44367*x^11 + 984834*x^13 + 23552028*x^15 + 597829275*x^17 + 15945972375*x^19 +...
%e Let R(x) = Series_Reversion(A(x)) so that R(A(x)) = x,
%e R(x) = x - 2*x^3 - 6*x^5 - 60*x^7 - 830*x^9 - 13950*x^11 - 267156*x^13 - 5629752*x^15 - 127807290*x^17 - 3082830030*x^19 - 78254901810*x^21 - 2076067799280*x^23 - 57266880966792*x^25 +...
%e then Series_Reversion(x + A(x)^3) = x/2 + R(x)/2.
%e Also, A(x) = x + 2 * A( x/2 + A(x)/2 )^3, where
%e A( x/2 + A(x)/2 ) = x + 3*x^3 + 33*x^5 + 528*x^7 + 10235*x^9 + 224001*x^11 + 5343738*x^13 + 136167888*x^15 + 3659113701*x^17 + 102800460825*x^19 + 3001057504233*x^21 + 90627712970220*x^23 + 2821487673544920*x^25 +...
%e and
%e A( x/2 + A(x)/2 )^3 = x^3 + 9*x^5 + 126*x^7 + 2205*x^9 + 44367*x^11 + 984834*x^13 + 23552028*x^15 + 597829275*x^17 + 15945972375*x^19 +...
%e which equals -x/2 + A(x)/2.
%t nmin = 1; nmax = 60; sol = {b[1] -> 1}; nsol = Length[sol];
%t Do[A[x_] = Sum[b[k] x^k, {k, 0, n}] /. sol;eq = CoefficientList[A[x - A[x]^3] - x - A[x]^3 + O[x]^(n+1), x][[nsol+1;;]] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, nsol + 1, nmax}];
%t a[n_] := b[2n-1];
%t a /@ Range[nmin, (nmax+1)/2 // Floor] /. sol (* _Jean-François Alcover_, Nov 06 2019 *)
%o (PARI) {a(n) = my(A=[1], F=x); for(i=1, n, A=concat(A, [0,0]); F=x*Ser(A); A[#A] = -polcoeff(subst(F, x, x - F^3) - F^3, #A) ); A[2*n-1]}
%o for(n=1, 30, print1(a(n), ", "))
%Y Cf. A153851, A275765.
%K nonn
%O 1,2
%A _Paul D. Hanna_, Aug 31 2016