login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061354
Numerator of Sum_{k=0..n} 1/k!.
34
1, 2, 5, 8, 65, 163, 1957, 685, 109601, 98641, 9864101, 13563139, 260412269, 8463398743, 47395032961, 888656868019, 56874039553217, 7437374403113, 17403456103284421, 82666416490601, 6613313319248080001, 69439789852104840011
OFFSET
0,2
COMMENTS
p divides a(p-1) for prime p = {2, 5, 13, 37, 463, ...} which apparently coincides with A064384(n) = {2, 5, 13, 37, 463, ...} Primes p such that p divides 0!-1!+2!-3!+...+(-1)^{p-1}(p-1)!. - Alexander Adamchuk, Jun 14 2007
GCD(a(n), a(n+2)) = A124779(n) is either 1 or a prime 2, 5, 13, 37, 463, ... = A064384. - Jonathan Sondow, Jun 12 2007
For proofs of Adamchuk's and my Comments, see the link "The Taylor series for e ...". - Jonathan Sondow, Jun 18 2007
LINKS
J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (2006), 637-641.
J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010.
FORMULA
a(n) = A000522(n)/A093101(n).
Numerators of floor(n!*exp(1))/n!, n>=1. Numerators of coefficients in expansion of exp(x)/(1-x). - Vladeta Jovovic, Aug 11 2002
a(n) = (1+n+n(n-1)+...+n!)/GCD(n!,1+n+n(n-1)+...+n!). - Jonathan Sondow, Aug 18 2006
EXAMPLE
1, 2, 5/2, 8/3, 65/24, 163/60, 1957/720, 685/252, ...
MATHEMATICA
exp[n_]:=Apply[Plus, 1/Range[0, n]!]; Numerator[Table[exp[n], {n, 0, 21}]] (* Geoffrey Critzer, May 05 2013 *)
A061354[n_] := Numerator[Sum[1/k!, {k, 0, n}]]; Array[A061354, 22, 0] (* JungHwan Min, Nov 08 2016 *)
Accumulate[1/Range[0, 30]!]//Numerator (* Harvey P. Dale, Apr 13 2018 *)
PROG
(PARI) { default(realprecision, 500); e=exp(1); for (n=0, 200, a=numerator(floor(n!*e)/n!); if (n==0, a=1); write("b061354.txt", n, " ", a) ) } \\ Harry J. Smith, Jul 21 2009
CROSSREFS
Cf. A061355 (denominators), A093101, A064384, A064384, A124779, A129924.
Sequence in context: A268660 A180627 A264860 * A162709 A242875 A222897
KEYWORD
nonn,frac
AUTHOR
Amarnath Murthy, Apr 28 2001
STATUS
approved