OFFSET
0,2
COMMENTS
p divides a(p-1) for prime p = {2, 5, 13, 37, 463, ...} which apparently coincides with A064384(n) = {2, 5, 13, 37, 463, ...} Primes p such that p divides 0!-1!+2!-3!+...+(-1)^{p-1}(p-1)!. - Alexander Adamchuk, Jun 14 2007
GCD(a(n), a(n+2)) = A124779(n) is either 1 or a prime 2, 5, 13, 37, 463, ... = A064384. - Jonathan Sondow, Jun 12 2007
For proofs of Adamchuk's and my Comments, see the link "The Taylor series for e ...". - Jonathan Sondow, Jun 18 2007
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..200
J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (2006), 637-641.
J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010.
FORMULA
Numerators of floor(n!*exp(1))/n!, n>=1. Numerators of coefficients in expansion of exp(x)/(1-x). - Vladeta Jovovic, Aug 11 2002
a(n) = (1+n+n(n-1)+...+n!)/GCD(n!,1+n+n(n-1)+...+n!). - Jonathan Sondow, Aug 18 2006
EXAMPLE
1, 2, 5/2, 8/3, 65/24, 163/60, 1957/720, 685/252, ...
MATHEMATICA
exp[n_]:=Apply[Plus, 1/Range[0, n]!]; Numerator[Table[exp[n], {n, 0, 21}]] (* Geoffrey Critzer, May 05 2013 *)
A061354[n_] := Numerator[Sum[1/k!, {k, 0, n}]]; Array[A061354, 22, 0] (* JungHwan Min, Nov 08 2016 *)
Accumulate[1/Range[0, 30]!]//Numerator (* Harvey P. Dale, Apr 13 2018 *)
PROG
(PARI) { default(realprecision, 500); e=exp(1); for (n=0, 200, a=numerator(floor(n!*e)/n!); if (n==0, a=1); write("b061354.txt", n, " ", a) ) } \\ Harry J. Smith, Jul 21 2009
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Amarnath Murthy, Apr 28 2001
STATUS
approved