The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A072883 Least k >= 1 such that k^n + n is prime, or 0 if no such k exists. 8
 1, 1, 2, 1, 2, 1, 16, 3, 2, 1, 32, 1, 118, 417, 2, 1, 14, 1, 22, 81, 76, 1, 12, 55, 28, 15, 0, 1, 110, 1, 232, 117, 230, 3, 12, 1, 4, 375, 2, 1, 48, 1, 46, 15, 218, 1, 78, 7, 100, 993, 28, 1, 624, 13, 252, 183, 226, 1, 104, 1, 1348, 777, 1294, 0, 1806, 1, 306, 1815, 10, 1, 30, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Because the polynomial x^n + n is reducible for n in A097792, a(27) and a(64) are 0. Although x^4 + 4 is reducible, the factor x^2 - 2x + 2 is 1 for x=1. - T. D. Noe, Aug 24 2004 LINKS Hugo Pfoertner, Table of n, a(n) for n = 1..756 MATHEMATICA Table[If[MemberQ[{27, 64}, n], 0, k=1; While[ !PrimeQ[k^n+n], k++ ]; k], {n, 100}] (* Second program: *) okQ[n_] := n == 4 || IrreduciblePolynomialQ[x^n + n]; a[n_] := If[!okQ[n], 0, s = 1; While[!PrimeQ[s^n + n], s++]; s]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jan 15 2019, from PARI *) PROG (PARI) isok(n) = (n==4) || polisirreducible(x^n+n); a(n) = if (!isok(n), 0, my(s=1); while(!isprime(s^n+n), s++); s); \\ adapted by Michel Marcus, Jan 15 2019 CROSSREFS Cf. A097792 (n such that x^n + n is reducible). Cf. A239666, A303121, A303122. Sequence in context: A295853 A287541 A288196 * A093101 A082469 A206566 Adjacent sequences:  A072880 A072881 A072882 * A072884 A072885 A072886 KEYWORD nonn AUTHOR Benoit Cloitre, Aug 13 2002 EXTENSIONS More terms from T. D. Noe, Aug 24 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 27 04:23 EDT 2021. Contains 346305 sequences. (Running on oeis4.)