login
A072884
3rd-order digital invariants: the sum of the cubes of the digits of n equals some number k and the sum of the cubes of the digits of k equals n.
2
1, 136, 153, 244, 370, 371, 407, 919, 1459
OFFSET
1,2
REFERENCES
J.-M. De Koninck and A. Mercier, 1001 Problemes en Theorie Classique Des Nombres, Problem 257 pp. 41; 185 Ellipses Paris 2004.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, London, England, 1997, pp. 124-125.
FORMULA
n such that f(f(n)) = n, where f(k) = A055012(k). - Lekraj Beedassy, Sep 10 2004
EXAMPLE
136 is included because 1^3 + 3^3 + 6^3 = 244 and 2^3 + 4^3 + 4^3 = 136.
244 is included because 2^3 + 4^3 + 4^3 = 136 and 1^3 + 3^6 + 6^3 = 244.
MATHEMATICA
f[n_] := Apply[Plus, IntegerDigits[Apply[Plus, IntegerDigits[n]^3]]^3]; Select[ Range[10^7], f[ # ] == # &]
Select[Range[10000], Plus@@IntegerDigits[Plus@@IntegerDigits[ # ]^3]^3)== #&]
CROSSREFS
Cf. A072409.
Sequence in context: A269062 A270301 A281241 * A072889 A157714 A165337
KEYWORD
nonn,fini,full,base
AUTHOR
STATUS
approved