login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072884
3rd-order digital invariants: the sum of the cubes of the digits of n equals some number k and the sum of the cubes of the digits of k equals n.
2
1, 136, 153, 244, 370, 371, 407, 919, 1459
OFFSET
1,2
REFERENCES
J.-M. De Koninck and A. Mercier, 1001 Problemes en Theorie Classique Des Nombres, Problem 257 pp. 41; 185 Ellipses Paris 2004.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, London, England, 1997, pp. 124-125.
FORMULA
n such that f(f(n)) = n, where f(k) = A055012(k). - Lekraj Beedassy, Sep 10 2004
EXAMPLE
136 is included because 1^3 + 3^3 + 6^3 = 244 and 2^3 + 4^3 + 4^3 = 136.
244 is included because 2^3 + 4^3 + 4^3 = 136 and 1^3 + 3^6 + 6^3 = 244.
MATHEMATICA
f[n_] := Apply[Plus, IntegerDigits[Apply[Plus, IntegerDigits[n]^3]]^3]; Select[ Range[10^7], f[ # ] == # &]
Select[Range[10000], Plus@@IntegerDigits[Plus@@IntegerDigits[ # ]^3]^3)== #&]
CROSSREFS
Cf. A072409.
Sequence in context: A269062 A270301 A281241 * A072889 A157714 A165337
KEYWORD
nonn,fini,full,base
AUTHOR
STATUS
approved