login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295853
a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = -2, a(1) = -1, a(2) = 2, a(3) = 1.
1
-2, -1, 2, 1, 13, 14, 47, 61, 148, 209, 437, 646, 1243, 1889, 3452, 5341, 9433, 14774, 25487, 40261, 68308, 108569, 181997, 290566, 482803, 773369, 1276652, 2050021, 3367633, 5417654, 8867207, 14284861, 23315908, 37600769, 61244357, 98845126, 160744843
OFFSET
0,1
COMMENTS
a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045).
FORMULA
a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = -2, a(1) = -1, a(2) = 2, a(3) = 1.
G.f.: (-2 + x + 9 x^2 - 2 x^3)/(1 - x - 3 x^2 + 2 x^3 + 2 x^4).
MATHEMATICA
LinearRecurrence[{1, 3, -2, -2}, {-2, -1, 2, 1}, 100]
CROSSREFS
Sequence in context: A134304 A211096 A134569 * A287541 A288196 A072883
KEYWORD
easy,sign
AUTHOR
Clark Kimberling, Dec 01 2017
STATUS
approved