login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295855
a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = 1, a(1) = -2, a(2) = 2, a(3) = 1.
1
1, -2, 2, 1, 9, 12, 33, 49, 106, 163, 317, 496, 909, 1437, 2538, 4039, 6961, 11128, 18857, 30241, 50634, 81387, 135093, 217504, 358741, 578293, 949322, 1531711, 2505609, 4045512, 6600273, 10662169, 17360746, 28055683, 45613037, 73734256, 119740509, 193605837
OFFSET
0,2
COMMENTS
a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045).
FORMULA
a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 1, a(1) = -2, a(2) = 2, a(3) = 1.
G.f.: (1 - 3 x + x^2 + 7 x^3)/(1 - x - 3 x^2 + 2 x^3 + 2 x^4).
MATHEMATICA
LinearRecurrence[{1, 3, -2, -2}, {1, -2, 2, 1}, 100]
CROSSREFS
Sequence in context: A136730 A175714 A291082 * A364371 A285068 A306149
KEYWORD
easy,sign
AUTHOR
Clark Kimberling, Dec 01 2017
STATUS
approved