login
A295856
a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = 0, a(1) = 0, a(2) = 3, a(3) = 1.
1
0, 0, 3, 1, 10, 7, 29, 28, 81, 93, 222, 283, 601, 820, 1613, 2305, 4302, 6351, 11421, 17260, 30217, 46453, 79742, 124147, 210033, 330084, 552405, 874297, 1451278, 2309191, 3809621, 6086044, 9993969, 16014477, 26205054, 42088459, 68686729, 110513044
OFFSET
0,3
COMMENTS
a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045).
FORMULA
a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 0, a(1) = 0, a(2) = 3, a(3) = 1.
G.f.: ((3 - 2 x) x^2)/((-1 + x + x^2) (-1 + 2 x^2)).
MATHEMATICA
LinearRecurrence[{1, 3, -2, -2}, {0, 0, 3, 1}, 100]
CROSSREFS
Sequence in context: A046658 A124574 A322383 * A052964 A084178 A262030
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Dec 01 2017
STATUS
approved